
NATBLASTER:
Establishing TCP Connections Between Hosts Behind

NATs∗

Andrew Biggadike, Daniel Ferullo, Geoffrey Wilson, Adrian Perrig
Information Networking Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{biggadike, ferullo, ggw, perrig}@cmu.edu

ABSTRACT
Firewalls and Network Address Translation (NAT) devices are be-
coming increasingly prevalent, and they pose a significant prob-
lem for connection establishment for peer-to-peer protocols. When
properly configured, thesemiddle-boxes1 inhibit TCP connections
solicited from outside the local network. This paper proposes novel
mechanisms to create direct TCP connections between two hosts
behind middle-boxes with minimal help from a third-party. We im-
plement two of these solutions on common hardware within a com-
mon environment. We are able to create direct TCP connections
between two hosts which are both located behind typical NATsde-
signed for small networks. Once this connection is established,
the applications can communicate with each other using a standard
TCP implementation with no further external help.

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management—Net-
work communication; C.2.5 [Computer Communications Net-
works]: Local and Wide-Area Networks—Internet; C.2.2 [Computer
Communications Networks]: Network Protocols—Protocol Ar-
chitecture

General Terms
Algorithms, Design, Reliability

∗This research was supported in part by CyLab at Carnegie Mellon
under grant DAAD19-02-1-0389 from the Army Research Office.
The views and conclusions contained here are those of the authors
and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either express or implied, of ARO,
Carnegie Mellon University, or the U.S. Government or any ofits
agencies.
1We refer to a NAT, firewall, or combination of the two as amiddle-
box.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM Asia Workshop2005 Beijing, China
Copyright 2005 ACM 1-59593-0302 ...$5.00.

Keywords
TCP Connectivity, Network Address Translation, Peer-to-peer over
NAT, stateful firewall, consistent translation, unsolicited filtering,
loose source routing, hole punching

1. INTRODUCTION
Network Address Translation was introduced as a means to con-

tinue the Internet’s growth despite rapid depletion of IPv4’s 32-bit
address range. A secondary function of NAT is to hide the network
topology from an external entity. Network Address Translation de-
vices (NATs, which are also commonly called middle-boxes) sep-
arate an internal network from the broader Internet throughthe use
of a separate address space in the internal network [9]. NATsdy-
namically translate between these address spaces for each network
connection. In addition to the IP address translation, NATsmust
also allocate distinct external ports to distinct internalhosts. This
allows multiple internal hosts to communicate with the sameexter-
nal host on the same source port. Another characteristic of NATs
is that they only allow connections originating from withinthe in-
ternal network. NATs drop unsolicited connection attempts2, since
they have no way of knowing to which internal host the packet
should be forwarded to.

Peer-to-Peer (P2P) networks have become increasingly popular.
Despite the controversy generated by P2P file-sharing programs
such as Napster and KaZaA, many useful and legitimate applica-
tions of P2P exist, for example, instant messaging, workspace shar-
ing [3], and file sharing. The OpenHash Project [8] is anotherappli-
cation of P2P networks. It provides a publicly available distributed
hash table (DHT) upon which applications can be developed, in-
cluding, many-to-many instant messaging, and a reliable CDlabel
database.

Since each NAT only allows the establishment of outgoing con-
nections, two peers that are both located behind a NAT cannotes-
tablish a direct TCP connection. Commercial NAT vendors have
addressed this limitation by adding port forwarding characteristics
to their devices. With port forwarding, administrators canspecify
the end hosts that should receive unsolicited connection attempts
for each port. While this solution provides the needed support
for many cases, it is limiting in cases where there are multiple
machines providing the same service and when services require
accepting connections on ports determined dynamically. Further-
more, if the end user doesn’t have the required access or knowledge

2An unsolicited connection attempt is a TCP SYN packet or a UDP
packet from the external network for which no mapping already
exists at the NAT.

to configure the NAT, this solution is of no help.
P2P protocols have addressed this problem through a few com-

mon approaches. First, protocols have enabled techniques whereby
peers that cannot be servers are sent messages that instructthem
to initiate connections to peers that are requesting their data. This
solution works in cases where only one peer is behind a NAT. The
second common approach is to route traffic through proxies that
each peer can connect to. While this solution enables a connection
between two hosts behind NATs, it is inefficient since all traffic
passes through the proxy. More related solutions are discussed in
Section 3.

The aim of our work is to develop a solution that will enable a
direct TCP connection between hosts that are located behindNATs.
In particular, we have developed solutions for various environments
depending on the port allocation characteristics of the NATand
the availability of loose source routing in the network. We have
focused on TCP, rather than UDP connections because most P2P
applications require reliable data transfer. Furthermore, UDP is a
connectionless protocol, and it doesn’t require a connection hand-
shake or sequence numbers coordination. Solving P2P over UDP
requires less complexity due to the simplicity of the protocol. Our
solutions use a third party to provide the peers with the informa-
tion needed to establish the direct connection. Depending on the
environment we employ various techniques to enable connections
to be established in a predictable and timely manner. Among these
techniques are setting the packets’ Time To Live (TTL) low, cap-
turing and parsing outgoing packets to provide informationto the
third-party helper, and injecting manually-constructed packets into
the network to determine ports selected by the NAT. Additionally,
if port allocation is random, the birthday paradox is leveraged to
reduce the necessary search space when determining the external
port the NAT has allocated. This approach yields a search space
that is approximately square root the size of a naive, port-scanning
approach.

2. NAT CATEGORIZATION
Three specific features must be performed by a network device

for it to be considered a NAT: transparent address assignment, trans-
parent routing, and ICMP packet payload translation.

Address assignment refers to the creation of a mapping between
non-routable internal and routable addresses at the start of a net-
work session. For networks to continue to function correctly, NATs
must perform this address assignment transparently with regard to
both the source and destination. NATs can perform this assign-
ment in either a static or dynamic manner. Static mappings must be
predefined in a particular NAT such that an〈Internal IP address, In-
ternal port〉 tuple is mapped to a single〈External IP address, Exter-
nal port〉 tuple for every session. Dynamic mappings, on the other
hand, are defined on a per-session basis, and there is no guarantee
that the same mapping will be created for future sessions.

A similar feature that NATs must implement is transparent rout-
ing. As mentioned, a NAT is a particular type of router that trans-
lates addresses in the packets it routes. This translation involves
changing the IP addresses and ports in packets based on observed
traffic flows. This must occur transparently with regard to the de-
vices in the network to ensure compatibility with existing network
stacks. A less obvious requirement of transparent routing is that
NATs must ensure routing advertisements on the internal network
do not reach the external network.

The final feature that must be implemented by NATs is perform-
ing the same translations that are done on regular packets tothe
payloads of ICMP error packets. When an error occurs in the net-
work, such as when a packet’s TTL expires, often an ICMP error

packet is sent back to the sender. ICMP error packets embed the
packet that generated the error inside their payload so the sender
knows exactly which packet the error occurred on. If these error
packets are generated from the external network, the addresses in
the embedded packet will be the external addresses rather than the
internal addresses. To make the embedded packet meaningfulfor
the internal network, it is necessary for NATs to perform a reverse
translation on the IP addresses within the ICMP error packet’s pay-
load.

While all NATs implement these three features, there are further
categorizations of NATs based on their characteristics andthe net-
working environments that they support. There are four categories
of NATs: Two-way NATs, Twice NATs, Multi-homed NATs, and
Traditional NATs. For further discussion on Two-way NATs, Twice
NATs, and Multi-homed NATs, see [12]. By far the most com-
mon type of NAT is a Traditional NAT, and can be further divided
into Basic NATs and Network Address Port Translation (NAPT)
devices.

Basic NATs and NAPTs differ only in whether the number of ex-
ternal addresses the NAT can assign to internal addresses islarger
or smaller than the number of internal addresses. A simple NAT
is used in the situation where the number of external addresses is
larger than or equal to the number of internal addresses. Since ev-
ery internal IP address can be given a unique external IP address,
these NATs do not perform port translation. NAPTs are used inthe
environment where there are less externally-allocatable addresses
than internal addresses. The common situation is where multiple
internal machines share one external IP address. In these situations
the NAT needs to allocate ports in addition to IP addresses toelim-
inate the chance of network flow ambiguity. NATs and NAPTs are
similar because neither accept incoming connections and both can
assign addresses either statically or dynamically.

NAPTs are the most common type of Traditional NAT since they
allow many internal machines to share a smaller set of addresses.
Most commercial NAT devices designed for small networks are
NAPTs. We have chosen to use NAPTs for our work due to their
prevalence and since they conflict with common P2P protocolsby
not allowing incoming connections. Henceforth we will refer to
NAPTs simply as NATs.

Our first step was to acquire commercial NATs to ensure that
their characteristics are in accordance with how NAPTs are de-
scribed in literature. We used the NatCheck program [1] to ver-
ify three common NATs: Netgear MR814, Linksys BEFSR41, and
Linksys BEFW11S4. All three NATs have the same behavior: All
three NATs provideconsistent translationfor both TCP and UDP
traffic. Consistent translation means that the NATs directly map
an〈Internal IP, Internal port〉 pair to the same〈External IP, External
port〉 for the duration of the time that the〈Internal IP, Internal port〉
pair is in use, regardless of the〈Destination IP, Destination port〉
of the outgoing packets. Consistent translation is a distinct con-
cept from static and dynamic address assignment because it refers
to not only the the IP address but also the port used by the internal
machine. RFC 3022 explicitly allows consistent translation [11].
None of the three NATs provideloopback translationfor either
TCP or UDP, which indicates if NATs correctly handle connections
between two internal computers that only know each other’s exter-
nal addresses. This test is not relevant for our purposes since in
our work we have assumed that the two peers are behind different
NATs. Finally, all three NATs provideunsolicited filteringfor TCP
and UDP, which tests whether NATs prevent unsolicited messages
to internal computers. Unsolicited filtering occurs in all NATs ex-
cept Two-way NATs and is the major hindrance in enabling P2P
communications between two devices behind NATs.

3. RELATED WORK
Independently three authors from Cornell worked on direct TCP

connectivity through NAT and had similar results to ours. Their
framework, termed NUTSS [4], provides for UDP and TCP con-
nectivity between hosts behind NATs, but their TCP technique has
a significant drawback. The protocol relies on spoofing packets in
order to enable TCP connectivity, which limits its feasibility in real
networks. Many Internet Service Providers perform ingressfilter-
ing to prevent spoofed packets from entering their networks, which
would cause the authors’ protocol to fail. Spoofing cannot bepart
of any solution to reliably connect hosts. To their credit, the authors
do mention a technique that does not rely on spoofing. However,
the technique relies upon TCP stack behavior, which is platform
dependent. Our techniques described in this paper avoid spoofing
while making realistic assumptions as well as provide for connec-
tivity in environments beyond what is considered in NUTSS [4].

To address the difficulties that NATs create for many Internet
protocols, a middle-box communication (MIDCOM) architecture
is being developed [13]. MIDCOM is a protocol that would allow
users behind a NAT or firewall to alter the middle-box’s behavior
to allow desired connections on demand. This system, while ap-
propriate in some cases, is not always possible. In an environment
where the user does not have control of the middle-box, P2P con-
nections would still be disabled.

Many times users behind NATs or firewalls connect to a P2P
network through a proxy server. A commercial proxy solutionis
provided by Hopster [6]. Hopster’s proxy runs locally on thepeer
machine and tunnels application level traffic over https (port 443) to
Hopster’s own machines. However, since Hopster routes all traffic
through their own machines, their approach is inefficient incom-
parison to ours, as is shown in the Section 5.

To enable direct P2P connections, UDP techniques have been
developed. UDP Hole Punching [5] allows direct connectionsin a
limited environment. The Simple Traversal of User DatagramPro-
tocol through Network Address Translators (STUN) Protocolis an
implementation of UDP Hole Punching that allows for NAT behav-
ior to automatically be detected and UDP connections created, in
limited cases [10].

In UDP hole-punching, the external port at each NAT is learned
by a third party assisting the direct communication attempt. Both
parties behind NATs send a UDP packet to the correct externalport
of the other peer. This creates the necessary NAT port mappings
and establishes the connection. Once the mappings are created,
direct UDP communication can occur. In situations where UDP
hole-punching succeeds, one or more of our techniques presented
in this paper will also work. Establishing a TCP connection be-
tween peers, rather than an UDP connection has advantages. First,
UDP mappings at the NAT cannot be relied upon to exist for the du-
ration of the connection and its setup. UDP is connectionless and
there is no explicit end to UDP communication. NATs typically
timeout UDP port mappings after period of inactivity. To main-
tain the UDP NAT mappings periodic traffic must be sent, even if
it is null, to uphold the UDP communication. Second, many fire-
walls are configured to explicitly reject any incoming UDP packet.
Finally, a pure TCP implementation of the connection is moreintu-
itive and existing code can be more easily modified to leverage our
techniques.

Recent work by Ford, et al. [2] has extended the hole-punching
technique to enable TCP connections between hosts behind well-
behaving NATs. The approach is similar to UDP hole-punching
since a mapping is created at each host’s NAT that enables a direct
TCP connection to be created, either via asymmetric or simulta-
neous TCP opens. This work focuses on developing a technique

that works on most NATs as well as defining the characteristics
necessary for other NATs to become compatible with TCP hole-
punching. Our work differs in that we have developed solutions for
enabling direct TCP connections in the presence of various NAT
behaviors, including those that are incompatible with TCP hole-
punching.

Gnutella has a solution [14] for enabling TCP communication
between two peers, but it only handles situations in which one peer
is behind a NAT. This solution is referred to as Push Proxy andes-
sentially creates multiple nodes that can push connection requests
to the server that is behind that NAT. Servers behind NATs send
messages to peers asking if they would be willing to be push prox-
ies. When the server behind the NAT indicates that it has a file
matching a query, it includes a list of those peers that have agreed
to be push proxies. When the peer wants to download the file, it
sends a Gnutella PUSH message to a push proxy, who then passes
that message along to the server behind the NAT. The server behind
the NAT then opens a connection to the peer who sent the PUSH
message so the file can be transferred. While this approach does
make it easier to establish a connection, it only handles thecase
where one peer is behind a NAT. Our solution addresses the more
difficult problem of when both peers are behind a NAT.

Walfish et al. [15] suggest using an indirection service thatwill
provide connectivity of two peers behind NATs by having both
peers open a connection to the indirection server and havingthe
server forward all traffic between them—in this paper we wantto
achieve such a connection without the need for such an indirection
service.

4. PROBLEM STATEMENT AND ASSUMP-
TIONS

Consider the situation in which a peer and its buddy3 know each
other’s IP addresses and are both behind NATs. If these hostswant
to set up a direct TCP connection, a traditional TCP connection
will not suffice. In a traditional TCP connection one party must
be the initiator (creates the initial SYN packet) while the other lis-
tens for the initiation. In the situation where two peers arebehind
NATs, the listening peer will be prevented from seeing the SYN
from the initiating peer because the SYNs will dropped at thelis-
tening peer’s NAT. The SYNs are dropped because NATs and fire-
walls will typically not allow unsolicited packets from IP addresses
on the Internet to enter their private network space. So, in order
to establish a direct connection between two hosts behind NATs,
each NAT must believe that the connection is solicited by thehost
within its internal network. We achieve this by making both parties
be the initiators of the TCP connection–both peers create aninitial
SYN packet. Each NAT will believe the TCP connection attempt
is solicited and will allow subsequent incoming data through to its
private network. Note that although both peers send SYN packets,
we are not using TCP simultaneous open.

In order to successfully create a TCP connection between the
peers, each peer must know its buddy’s externally-facing port prior
to initiating the connection. This port is chosen by the NAT once a
packet arrives from its internal network requesting to be routed to
an IP address outside the internal network. As its bookkeeping, the
NAT binds the internal IP address and port with the external port
it chooses. We refer to this binding as the NAT’s mapping. The
NAT does not share this mapping with any host. Our techniques
show how the NAT’s mapping can be efficiently determined. Once
both peers know the externally-facing port of their buddy, TCP con-

3We refer to a peer as “peer” and the other peer it is trying to con-
nect to as its “buddy.”

Figure 1: Environment for which we develop our techniques.

nections are initiated by both peers. The TCP sequence and ac-
knowledgment numbers are integral components of synchronizing
the TCP connection. Sequence numbers cannot be chosen, onlyob-
served. Our paper shows how the coordination of these parameters
can be managed in order to successfully create a TCP connection
regardless of the network environment.

Establishing direct TCP connections between hosts behind NATs
is a difficult problem because external ports chosen by NATs are
not directly accessible by hosts behind the NATs, and because suc-
cessful TCP connections require coordination of sequence and ac-
knowledgment numbers. There is no single solution that willwork
for all environments. The behavior of the NAT is dependent onits
implementation, and the ability to predict ports is dependent on the
amount of activity on the internal network.

We make two valid assumptions about the network which held
for all the NATs we tested. The first assumption is we assume that
hosts do not see ICMP TTL Exceeded packets from the external
network. These packets, if received by either the peer or buddy,
will terminate the TCP connection attempt. Many of our solutions
rely on the ability to initiate a TCP connection by sending out an
initial SYN packet with the TTL set too low. Once the SYN packet
is dropped en route, ICMP TTL Exceeded packets are returned to
the NAT. The NATs used for implementation did not forward ICMP
TTL Exceeded packets to the private network when in responseto
TCP packets. Even if a NAT does forward ICMP TTL Exceeded
packets to the private network, firewalls can be deployed at the
host to block such packets. Our second assumption is that a NAT
will not nullify the mapping created if it sees ICMP TTL Exceeded
packets. Alternatively, we could leave the TTL value with the de-
fault value, and rely on the destination NAT not generating TCP
RST packets. In practice this is a viable option since many NATs
don’t generate RST packets to help defend against port scanning.

5. TECHNIQUES
Using Figure 1 as the model environment, our goal is to enablea

direct TCP connection betweenA andB, residing behind NATs NA
and NB.

We have developed various techniques for enabling this TCP
connection depending on the exact properties of the NATs andthe

network properties. If we consider this information as the ordered
triplet
〈NA port allocation, NB port allocation, source routing availability〉,
we consider the following cases:
Case 1:〈predictable, predictable, LSR〉
Case 2:〈predictable, predictable, no LSR〉
Case 3:〈random, predictable, LSR〉
Case 4:〈random, predictable, no LSR〉
Case 5:〈random, random, LSR〉
Case 6:〈random, random, no LSR〉

Note that〈random, predictable, X〉 is equivalent to〈predictable,
random, X〉.

5.1 Pre-connection Diagnostics
In order for the helper,X, and the two peers,A and B, to de-

termine which of the following cases their connection attempt falls
into, X must first do some diagnosis of each peer.

In order to use Cases 1, 3, and 5, the parties must determine if
loose source routing is available on the segments betweenA and
X and B and X. Loose source route (LSR) is an IP option that
allows the creator of an IP packet to specify a list of mandatory IP
addresses to be used in the packet’s route. The result of thisoption
is that each IP address in the route list will receive the packet in
the order specified in the route list. The loose source route option
introduces a security risk, because an attacker can eavesdrop on a
session by being in the route list. Due to this potential risk, many
routers drop packets containing the loose source route option.

To determine if LSR is available fromA to B throughX, A can
simply try to connect toB, loose source routing the packet through
X. If X receives this packet, then LSR is available fromA to B
for the first half of the journey toX. If X does not receive any
packets after a specified timeout then it can be assumed LSR isnot
available. BecauseX can only tell if the first half of the journey
from A to B allows LSR from this method, it must check to see that
it also gets LSR packets fromB. If it does thenX can conclude that
LSR is available fromA to B throughX, in any other case it must
assume LSR is not an option.

To determine if NA will randomly or predictably allocate ports,
A can open two TCP connections toX from sequential ports. If the
ports for these connections observed byX are sequential thenX can
conclude that NA allocates ports sequentially, and thus predictably.
When connecting toB, A should use the next port in sequence, to
ensure that NA will continue to map ports in the mannerX can
predict.

If NA does not assign ports sequentially, it is still possible to pre-
dict A’s ports, if NA implements consistent translation.A must first
open a legitimate connection toX from internal portpA. NA will
assign this connection a random port.X very clearly can see the
port chosen by NA since the packet was sent to it.A can open a
second connection toX sent to a different port onX from the same
internal port , andX can see if these two connections contain the
same external port. If they do, NA implements consistent transla-
tion. A must now use the internalpA to connect toB, so thatX can
tell B the external port chosen by NA. It is important thatA andX
maintain this connection untilA is connected toB so that NA will
not alter the port mapping.

If, after trying both methods of port predictionX is unable to re-
liably predict ports assigned by NA, thenX must assume NA assigns
ports randomly.

While X completes this diagnosis ofA it can simultaneously do
the same withB. OnceX has all the required information, the con-
nection protocol can begin. The specific case to implement isde-
termined by the information gathered from this diagnosis.

5.2 Sequence and Acknowledgment Number
Coordination

Every participant in a TCP connection maintains two variables,
a sequence number and an acknowledgment number. At any given
time, the sequence number at any host is the sequence number of
the last packet sent. On the other hand, at any given time, theac-
knowledgment number at a host is the sequence number of the next
expected packet. [7].

Stepping through the three-way handshake, the initial sequence
and acknowledgment numbers are established as follows:

1. After client sends SYN packet,
Client’s seq#: P, ack#: N/A
Server’s seq#: N/A, ack#: N/A

2. After server receives SYN packet and sends SYN+ACK,
Client’s seq#: P, ack#: N/A
Server’s seq#: Q, ack#: P+1

3. After client receives SYN+ACK and sends ACK,
Client’s seq#: P, ack#: Q+1
Server’s seq#: Q, ack#: P+1

4. After server receives ACK,
Client’s seq#: P, ack#: Q+1
Server’s seq#: Q, ack#: P+1

The state at the end of the three-way handshake must be repli-
cated by our solutions even though both peers assume client roles.
At the end of each solution, each peer’s acknowledgment number
must be one greater than their buddy’s sequence number. Our solu-
tions achieve this coordination.

5.3 Low TTL Value Determination
Some of our solutions depend on setting a TCP packet’s time to

live (TTL) value such that the packet will leave the peer’s internal
network, but not reach the buddy’s NAT. For different networks this
value will be different, and as such it must be able to be dynami-
cally determined.

To determine how far away the buddy is, a peer can follow the
typical traceroute method. That is, send SYN packets with increas-
ing TTL values, starting at 1. Each of these packets will cause
ICMP TTL Exceeded messages to be sent back to the peers when
the TTL expires. By analyzing when ICMP TTL Exceeded mes-
sages are returned the peer can determine a safe value to use for the
low TTL value in the connection.

Most NATs will not forward ICMP TTL Exceeded messages
back to an internal host, so a peer can conclude that a TTL value
caused a packet to leave the internal network as soon as an ICMP
TTL Exceeded message is not returned.

Likewise, in situations where the NAT does forward ICMP TTL
Exceeded messages the peer must base the discovered safe TTL
value by analyzing the buddy NAT’s messages. If the buddy’s NAT
generates a RST packet then the peer can use a TTL value one less
than the value that cause the RST packet. If the peer never gets
a RST packet but begins to stop receiving ICMP TTL Exceeded
messages then it can conclude the buddy’s NAT drops unsolicited
messages without reply, which is safe behavior. In fact, this case
is the same as when the peer’s NAT does not forward ICMP TTL
Exceeded messages.

This safe TTL value determination does not require any partici-
pation by any party other than the peer. Thus, it can be done atany
point before the safe low TTL value must be used in the connection.

A X B

2a

1a

2b

1b

3b 3a

4a 4b

Figure 2: Case 1

5.4 Case 1:〈predictable, predictable, LSR〉

We use the notationNA:4000→ NB:5000, options/payloadto
denote the contents of the packet while it is in transit on theIn-
ternet from NAT NA to NAT NB. This notation signifies that the
packet has a source address of NA’s IP address, source port of
4000, destination address of NB’s IP address, and destination port
of 5000. Additionally, any important options or payload values ap-
pear after the destination port. The options includeLSR:X, SYN:P,
ACK:Q, andSYN+ACK:R,S. LSR:Xdenotes that the packet will be
loose-source-routed throughX. SYN:P, ACK:Q, denote the type of
TCP packet followed by the sequence or acknowledgment number.
SYN+ACK:P, Q+1denotes that the packet is a TCP SYN+ACK
packet with sequence numberP and acknowledgment numberQ+
1. Initially we develop Case 1,〈predictable, predictable, LSR〉, us-
ing the sequence of events found in Figure 2.

1. AandBsend a SYN to each other loose source routed through
HelperX

(a) NA:4000→ NB:5000, LSR:X, SYN:P

(b) NB:5000→ NA:4000 , LSR:X, SYN:Q

These SYN packets are generated by TCPconnect() calls.
These SYNs create the desired mappings at NAT NA and NB.
The mapping at NA will allow subsequent communication
from NB:5000 to be relayed to A and vise versa.

2. X buffers both packets and sendsA andB the ISNs each other
used

(a) X:1234→ NA:3999 , B just used ISN Q

(b) X:1235→ NB:4999 , A just used ISN P

Each peer needs their buddy’s ISN, so they can fabricate a
legitimate SYN+ACK packet.

3. A andB send SYN+ACKs to each other

(a) NB:5000→ NA:4000 , LSR:X,
SYN+ACK:Q, P+1

(b) NA:4000→ NB:5000 , LSR:X,
SYN+ACK:P, Q+1

These SYN+ACKs are generated from a separate thread run-
ning on each peer. By reusing their original sequence num-
bers,P andQ, as the sequence numbers in the SYN+ACKs,A
andB will ensure the final state of the sequence and acknowl-
edgment numbers replicates that of a real TCP connection as
discussed in Section 5.2.

4. A andB send ACKs to each other

(a) NA:4000→ NB:5000, LSR:X, ACK:Q+1

(b) NB:5000→ NA:4000, LSR:X, ACK:P+1

The TCP stack will do this step for us automatically once the
fake SYN+ACKs are received.

5. X drops the two ACKs as they arrive, because no one is ex-
pecting to receive an ACK.

Figure 2 assumes thatA and B are aware of which port their
buddy will be working on; this assumption is reasonable since the
peer and buddy must have known about each other ahead of time.
Prior to step 1,X must perform port prediction on bothA andB so
thatX can predict the ports that will be chosen by the NAT devices.
A must know NB is working on port 5000, whileB must know that
NA is working on port 4000. For simplicity we assumeX itself is
not behind a NAT, but the only condition is thatX must have prior
direct connections with bothA andB.

An alternative solution to Case 1 exists.X could spoof the needed
SYN+ACK packets in steps 2 and 3 rather than send information
to A andB so they can fabricate the SYN+ACKs themselves. We
choose the presented method because ifX spoofs the SYN+ACKs,
they may be dropped by a router rather than forwarded. Addition-
ally, moving SYN+ACK forging fromX to A andB removes the
need forX to run with superuser privileges.A andB must already
run with superuser privileges for other purposes.

Since steps 2 through 5 are so repeatedly used in our techniques,
we will denoteFunction Case1(integer extPortA, integer extPortB)
as the execution of steps 2 through 5, substituting the parameters
extPortA and extPortB for the external ports 4000 and 5000 re-
spectively.

5.5 Case 2:〈predictable, predictable, no LSR〉

Case 1 relied on the availability of loose source routing. Most
routers currently are configured to prevent loose source routing,
and will typically drop packets requesting the service. As such,
there is a high probability that techniques relying on loosesource
routing will not be successful in practice. If loose source routing is
not available, the sequence number of the SYNs can be communi-
cated toX using an out-of-band channel (their pre-established TCP
connection withX) instead of havingX physically see the packets.
Note that in step 2 of Figure 2,X knows the TCP sequence numbers
P and Q becauseX actually received the two SYN packets. Without
loose source routing this is not the case.

To initiate the connection, each end host sends an initial SYN
packet to their buddy that they know will not reach its destination.
They then sniff the packet off the network, note the sequencenum-
ber, and report this information toX. X needs the TCP sequence
number from these packets so that it will be able to relay the in-
formation back toA andB so that they can generate SYN+ACKs.
Two ways of sending packets that will not reach their destinations
are addressed.

The simplest solution is for each peer to send a SYN to their
buddy without regard. Properly configured NATs and firewallsat
the receiving end will not forward this packet to the internal host
because no mapping exists. Some NATs and some firewalls will
send TCP Reset packets (RSTs) to the source of an unsolicitedSYN
packet. If a NAT does generate RST packets,AandB cannot simply
send a SYN to each other like step 1 in Figure 2 would suggest,
because upon receipt of this RST, NA and NB would terminate the
hole created. If the NATs do not generate RST packets, the open
TCP connections will not be abruptly terminated.

A X B
2a

3a

4a

2b

3b

4b

5a5b

6a 6b

Figure 3: Case 2

Another way to ensure the SYN packet will not reach its desti-
nation network is to send SYN packets with TTL values less than
the path length to the buddy’s NAT. The packets will definitely be
dropped on the way to the destination, and a TCP RST packet will
not be seen by either sender. Rather, an ICMP Time Exceeded
packet will be seen and is a problem because ICMP Time Exceeded
packets terminate a TCP connection abruptly. However, if the user
can configure their local firewall to drop ICMP packets or if the
NAT doesn’t forward these ICMP messages to its internal network,
the TCP connection attempt will not abruptly close.

A solution cannot involve simply spoofing the source addressof
the SYN packet so that the sender does not receive either the ICMP
packet or the RST packet. Doing this would create an invalid map-
ping at the middle-box. Upon seeing a SYN packet, the middle-box
will create a mapping from internal IP address and port to external
IP address and port. However, since a spoofed SYN packet has an
incorrect source IP address, the mapping will not correspond to the
correct host in the internal network. Additionally, a solution can-
not involve setting the TTL so low that even the middle-box does
not see the SYN packet, because doing this would not create the
mapping that we need to allow subsequent communication intothe
network from the outside.

Assuming a〈predictable, predictable, no LSR〉 environment, the
connection as we now have described is presented in Figure 3.

1. X does port prediction as described in Section 5.1.X predicts
NA’s next port to be 4000 and NB’s next port to be 5000.X
informsA andB of this via their existing connections.

2. A and B send a SYN to each other that they know will be
either dropped by the NAT at the other side or dropped due
to a TTL expiration

(a) NA:4000→ NB:5000, SYN:P

(b) NB:5000→ NA:4000, SYN:Q

This is the point at which the actual TCPconnect() call
is made at each peer. The SYN packets are generated by
the TCP stacks. This creates the mappings at the NATs that
will allow subsequent communication from the buddy’s IP
address and port to reach the peer.

3. A andB sendX the ISNs (P and Q) they observed

(a) NA:3999→ X:1234, I just used ISN P

(b) NB:4999→ X:1235, I just used ISN Q

Each peer will need its buddy’s ISN so they can fabricate
legitimate SYN+ACKs to their buddy.

4. X sendsA andB the ISNs each other observed

(a) X:1234→ NA:3999, B just used ISN Q

(b) X:1235→ NB:4999, A just used ISN P

5. A andB send SYN+ACKs to each other

(a) NB:5000→ NA:4000, SYN+ACK:Q, P+1

(b) NA:4000→ NB:5000, SYN+ACK:P, Q+1

This is the second part of the three-way handshake. Again,
by reusing their original sequence numbers,P andQ, as the
sequence numbers in the SYN+ACKs,A andB will ensure
the final state of the sequence and acknowledgment numbers
replicates that of a real TCP connection as discussed in Sec-
tion 5.2.

6. A and B send ACKs to each other that they know will be
either dropped by the NAT at the other side or dropped due
to a TTL expiration

(a) NA:4000→ NB:5000, ACK:Q+1

(b) NB:5000→ NA:4000, ACK:P+1

The TCP stack will send these ACKs automatically for us,
finishing the three-way handshake. We do not want the ACKs
to reach their destinations because no one is waiting for an
ACK.

Much like in Case 1, as an alternate to steps 4 and 5,X could
spoof the needed SYN+ACK messages toA andB. However, we
have chosen the presented method for the same reasons as in Case
1.

Since steps 2 through 6 are so repeatedly used in our techniques,
we will denoteFunction Case2(integer extPortA, integer extPortB)
as the execution of steps 2 through 6, substituting the parameters
extPortA and extPortB for the external ports 4000 and 5000 re-
spectively.

5.6 Case 3:〈random, predictable, LSR〉

Case 3〈random, predictable, LSR〉 is similar to Case 1 as de-
scribed in Figure 2. However,X will not be able to predict one of
the two NAT’s ports, say NA. A will have to send its SYN packet
first to allowX to view which port NA chose.X will then have to
report this information toB so thatB can send its SYN out to the
proper destination IP address and port. This modification ofCase 1
is depicted in Figure 4 and is explained below.

1. X does port prediction as described in Section 5.1.X cannot
predict NA’s next port, but can predict NB’s next port to be
5000 and informsA andB of this via their existing connec-
tions.

2. A andB synchronize viaX

(a) NA:m→ NB:5000, LSR:X, SYN:P

(b) X letsB know that NA is working on portm

(c) NB:5000→ NA:m, LSR:X, SYN:Q

These SYN packets are generated by TCPconnect() calls.
These SYNs create the desired mappings at NAT NA and NB.

3. Call Case1(m,5000)

A X B

2b

2c

2a

Case1 (m. 5000)

Figure 4: Case 3

...

...

�� �� ��A X B
2a

3

4

5

6

Case2 (m, 5000)

Figure 5: Case 4

5.7 Case 4:〈random, predictable, no LSR〉

The environment in Case 4 is〈random, predictable, no LSR〉. We
have developed a solution for this environment that dependson the
random NAT not rejecting a TCP packet with an invalid ACK or
checksum field corresponding to a connection previously initiated
by the host behind the NAT. The solution is presented in Figure 5
and explained below.

1. X does port prediction as described in Section 5.1.X cannot
predict NA’s next port, but can predict NB’s next port to be
5000 and informsA andB of this via their existing connec-
tions.

2. A sendsT SYNs toB that will either be dropped by the NAT
at the other side or dropped due to a TTL expiration

i = 0
While i < T

NA:rand→ NB:5000, SYN:anything
i = i +1

End While

This createsT mappings at NAT NA, one of which B will
eventually guess with a SYN+ACK.

3. X instructs B to begin sending SYN+ACKs to NA

4. B sends many SYN+ACKs to NA until one reachesA

i = 1024
While A has not reported success

NB:5000→ NA:i,
SYN+ACK:,anything,anything, Payload:i
i = i +1

End While

5. A reports the payload of the packet that made it through the
NAT.
NA:3999→ X:1234, portm worked
A will see this invalid SYN+ACK packet by listening on the
wire for any SYN+ACK packet from NB.

6. X tells B to connect withA on portm
B now knows where to send its SYN.

7. Call Case2(m,5000)

The T SYNs sent byA in step 2 are independent of any TCP
connect() call. They are merely packets generated using the lib-
net libraries, creatingT mappings at NATA. On the other hand,
the SYNs generated in step 2 of theCase2call are due to TCP
connect() calls byA andB. This solution to a Case 4 environment
depends on the behavior of the NAT that allocates ports randomly.
The solution relies on the middle-box not denying TCP packets
with incorrect fields such as the sequence number or checksum.

The valueT can be chosen such thatB has a 95% chance of
guessing a correct external port after generatingT SYN+ACKs
with random destination port numbers. In essence, NATA randomly
choosesT numbers (its external port numbers), thenB must keep
guessing numbers until one chosen byB is in the set chosen by
NATA. We can use a probabilistic analysis to construct an efficient
scenario in which a minimal amount of work is imposed on both
A and B. Let PrG be the probability thatB guesses at least one
correct port inT trials, and letPr¬G be the probability thatB does
not choose a correct port inT trials. Given that NATA has already
chosenT distinct port numbers within the range[1025,65535], if B
choosesT distinct ports, the probability ofBnot choosing a number
from the set chosen by NATA is

Pr¬G =
n−T

n
·
n−1−T

n−1
·
n−2−T

n−2
· . . . ·

n− (T −1)−T
n− (T −1)

where n is the number of possible port choices (n= 65535−1024=
64511).

Pr¬G =
T−1

∏
i=0

n− i−T
n− i

Conversely, the probability of guessing at least one port correctly
in T trials is

PrG = 1−Pr¬G

As stated before,T should be chosen such that

PrG > 95%

1−
T−1

∏
i=0

n− i−T
n− i

> 95%

Solving this product forT yieldsT = 439.

1−
439−1

∏
i=0

64511− i−439
64511− i

= 0.9506> 95%

PortNA

Knowledge

PortNB

Knowledge

A B

Figure 6: Resource Diagram Deadlock

A X B
2a

2c

3a

2b

2c

3b

Case1 (m, n)

Figure 7: Case 5

This result says that if A sends out 439 SYN packets, which are
mapped to distinct, random, external ports at NATA, andB sends
many SYN+ACK packets with distinct, random, destination ports,
B has greater than a 95% chance of correctly guessing one of the
439 mapped external ports before it sends the 440th SYN+ACK.

The reason for only sendingT SYN packets is to minimize two
resources, the first being network bandwidth use, and the second
being the number of mappings created at the NAT.

5.8 Case 5:〈random, random, LSR〉

In Case 5 the environment is〈random, random, LSR〉. In order
to allowX to synchronize bothA andB, B must know the port cho-
sen by NA prior to sending out its SYN. In order to determine what
port NA will choose,X will have to seeA’s SYN packet.A’s SYN
packet cannot be sent untilX determines which port NB chooses.
This deadlock is illustrated in Figure 6.A is holding the “Port NA
Knowledge” resource by not sending out a SYN, effectively pre-
venting X from learning the port chosen by NA. Likewise B is
holding the “Port NB Knowledge” resource. Each needs the other’s
port before they can release the resource held. Our solutionpre-
vents this deadlock by havingA andB send two SYN packets loose
source routed throughX, not connected to a TCPconnect() call.
These two SYN packets create the mappings needed at each NAT
and allowsX to gain the two resources, and coordinate the connec-
tion in a similar manner to Case 1 or 2. Our solution for Case 5 is
shown in Figure 7 and is explained below.

1. X does port prediction as described in Section 5.1.X cannot
predict NA or NB’s next ports and informsA andB of this via
their existing connections.

2. A andB each send a SYN loose source routed throughX

(a) NA:m→ NB:anythingSYN:anything, LSR:X

(b) NB:n→ NA:anythingSYN:anything, LSR:X

(c) X reportsm to B andn to A.

..

.
..
.

..

.
..
.

A X B
2 2

33

44

5 5

Case2 (m, n)

Figure 8: Case 6

These SYNs will create the necessary mappings at each NAT.

3. AandBsend a SYN to each other loose source routed through
X

(a) NA:m→ NB:n, LSR:X, SYN:P

(b) NB:n→ NA:m, LSR:X, SYN:Q

Because ofConsistent Translation, even though the destina-
tion ports are different from the previous step, the NAT will
still utilize use the same mapping (and thus the same external
port) for these packets.

4. Call Case1(m, n)

Note that the SYNs sent in step 2 are not connected to any TCP
connect() call, rather the SYNs sent out in step 3 are due to a TCP
connect() call. Also the SYN+ACKs sent in step 3 of theCase1
call are not tied to a TCPaccept() subroutine.

5.9 Case 6:〈random, random, no LSR〉

In Case 6 the environment is〈random, random, no LSR〉. Look-
ing back at the resource diagram deadlock in figure 6, neitherA
nor B holds these port knowledge resources since packets cannot
be loose source routed. The solution to this case is picturedin Fig-
ure 8 and explained below.

1. X does port prediction as described in Section 5.1.X cannot
predict NA or NB’s next ports and informsA andB of this via
their existing connections.

2. A sendsT SYNs toB and B sendsT SYNs to A that will
either be dropped by the NAT at the other side or dropped
due to a TTL expiration

i = 0
While i < T

NA:rand→ NB:rand, SYN:anything
NB:rand→ NA:rand, SYN:anything
i = i +1

End While

These SYNs createT mappings at both NATs.

3. B andA send many SYN+ACKs to their buddy’s NAT until
one reaches their buddy.

i = 1024
While A has not reported success

NB:rand→ NA:i,
SYN+ACK:,anything,anything, Payload:i
NA:rand→ NB:i,
SYN+ACK:,anything,anything, Payload:i
i = i +1

End While

4. A andB report the payload of the packet that made it through
the NAT.
NA:3999→ X:1234, portm worked
NB:4999→ X:1235, portn worked

5. X tells B to connect withA on portm and tellsA to connect
with B on portn.
A andB now know the external port of their buddy.

6. Call Case2(m, n)

Case 6 is significantly more difficult than Case 4, because each
peer must correctly guess one entire mapping〈source port, desti-
nation port〉 at the opposite NAT. In Case 4, the peer behind the
non-random NAT only had to guess the destination port correctly.
The source port was fixed since one of the NATs was predictable.
The search space for Case 6 is the square of the search space for
Case 4 - instead of 64,511 possibilities, there are 4,161,669,121
combinations to be guessed from.

6. IMPLEMENTATION
We have implemented Cases 2 and 4 in C on Linux workstations

and have made use of the libnet and libpcap libraries. Cases 1, 3,
5, and 6 were not implemented.

Both the helper and peer connection libraries consist of a single
function. The helper routine,natblaster server(), only needs
to be provided the port number the helper should listen on. The
peer connection routine,natblaster connect(), must be pro-
vided seven parameters: (1) the helper’s IP address and (2) port
number, (3) the local peer’s external IP address, (4) internal IP ad-
dress, and (5) port, (6) the buddy’s external IP address, and(7)
port. The local peer and buddy ports are only needed by the helper
to help create a unique identifier for the connection attempt. The
〈Local External IP, Buddy Internal IP, Buddy Internal Port〉 triple is
used as the unique identifier at the helper. The libraries will try
to provide a socket on the specified ports, however, the returned
socket is not guaranteed to be over the ports specified. Assum-
ing thenatblaster connect() works, the library returns a valid
socket handle.

To test our implementation we ran two peers, each located be-
hind different commercial NATs on separate networks. The third-
party program was run on a third computer not located behind a
NAT. We tested our code on the Internet rather than a local network
to make our tests more realistic.

In order to create packets that will never reach the buddy and
return no error message, we set the TTL value too low to reach
the buddy. Setting the TTL too low was accomplished by calling
thesetsockopt() system call with theIP TTL option. The option
also requires a TTL value. This value must be less than the number

of hops to the buddy, but greater than the number of hops to the
outermost NAT. The socket option must not be persistent for the
entire life of the socket. For instance, after the three-wayhandshake
has succeeded,setsockopt() should be called again to raise the
TTL so that subsequent data will make it to the peer. Relying on
a low TTL only works if an ICMP TTL Exceeded packet is not
seen by the peer’s TCP stack, because it could cause the socket to
fail at the peer. The NATs we tested do not forward ICMP TTL
Exceeded packets to the internal network. The alternative would
have been to send normal packets and hope the buddy’s NAT will
silently drop them, however, some NATs may send RST packets
in response to unsolicited data. This behavior is implementation
specific. We did not make use of the TTL determination technique
presented in Section 5.3; instead we chose low and normal TTL
values that we knew were appropriate.

For the pre-connection diagnostics we implemented the sequen-
tial port allocation determination method, but did not implement
the consistent translation determination. Our implementation does
not make use of consistent translation.

Both our Case 2 and Case 4 implementations are successful and
able to open direct TCP connections. Case 2 reliably opens connec-
tions, and Case 4 is successful with a high probability (the probabil-
ity of success is determined by the number of SYNs and SYN+ACKs
sent, as discussed earlier).

We did not implement Case 6 due to the reasons given at the
end of Section 5.9. We did not implement Cases 1, 3, and 5 be-
cause LSR is not typically available on the Internet and we believe
it would have a low probability of succeeding in practice.

As previously mentioned, we used the standard Berkeley net-
work implementation, augmenting it with additional systemcalls
when necessary. For instance, when we send a SYN packet but
need to know its sequence number, the packet is sent using a stan-
dard connect() call, after first having started a thread to watch
the wire for the sent SYN packet. This thread can then report the
sequence number used.

In both Case 2 and Case 4 it is necessary to run the peers with
root privileges, as they are required by the libpcap and libnet li-
braries. The helper can run with normal user privileges since no
spoofing nor sniffing is necessary.

7. CONCLUSION
We have shown how to create direct TCP connections between

hosts behind NATs in typical environments with typical hardware.
These solutions do not involve changing the TCP/IP stack in any
way, but rather leverage the cooperation of these parties toestab-
lish a connection. Our solutions can be applied to many applica-
tions from Peer-to-Peer networks to Instant Messaging. Existing
solutions for this connectivity problem include proxies, which are
not an efficient use of network resources and do not scale.

Our techniques outlined in this paper are meaningful regardless
of whether or not NATs are integral network components. The
cases which contain predictable NATs can also be applied to hosts
behind stateful firewalls. Similar to NATs, stateful firewalls are ca-
pable of only allowing TCP connection instantiation from within
the network they protect. Our solutions enable both partiesto in-
stantiate the TCP connection, which these stateful firewalls will
allow. Some of our solutions would not be advisable in situations
where IDSes are deployed due to the port scanning equivalenttech-
nique used in Cases 4 and 6, which will most likely set off such
network monitoring devices. However, our solutions are general
enough to work in most environments, and even those environ-
ments which may not yet exist: NATs that do random port allo-
cation.

8. REFERENCES
[1] Bryan Ford. NatCheck: Hosted by the MIDCOM-P2P

project on SourceForge.
http://midcom-p2p.sourceforge.net.

[2] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-Peer
Communication Across Network Address Translators. In
USENIX Annual Technical Conference, Anaheim, CA, April
2005.

[3] Groove Networks.http://groove.net.
[4] Saikat Guha, Yutaka Takeday, and Paul Francis. NUTSS: A

SIP-based approach to UDP and TCP Network Connectivity.
In SIGCOMM 2004 Workshops, Aug 2004.

[5] M. Holdrege and P. Srisuresh. Protocol Complications with
the IP Network Address Translator. RFC 3027, Internet
Engineering Task Force, January 2001.

[6] Hopster: Bypass Firewall Bypass Proxy Software.
http://www.hopster.com.

[7] Information Sciences Institute. Transmission Control
Protocol (TCP). RFC 793, Internet Engineering Task Force,
September 1981.

[8] Brad Karp, Sylvia Ratnasamy, Sean Rhea, and Scott
Shenker. Spurring Adoption of DHTs with OpenHash, a
Public DHT Service. InProceedings of the 3rd International
Workshop on Peer-to-Peer Systems, Feb 2004.

[9] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot,
and E. Lear. Address Allocation for Private Internets. RFC
1918, Internet Engineering Task Force, February 1996.

[10] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy.
STUN - Simple Traversal of User Datagram Protocol (UDP).
RFC 3489, Internet Engineering Task Force, September
2003.

[11] P. Srisuresh and K. Egevang. Traditional IP Network
Address Translator (Traditional NAT). RFC 3022, Internet
Engineering Task Force, January 2001.

[12] P. Srisuresh and M. Holdrege. IP Network Address
Translator (NAT) Terminology and Considerations. RFC
2663, Internet Engineering Task Force, August 1999.

[13] P. Srisuresh, J. Kuthan, J. Rosenberg, A. Molitor, and
A. Rayhan. Middlebox communication architecture and
framework. RFC 3303, Internet Engineering Task Force,
August 2002.

[14] Jason Thomas, Andrew Mickish, and Susheel Daswani. Push
Proxy: Protocol Document 0.6, June 2003.

[15] Michael Walfish, Jeremy Stribling, Maxwell Krohn, Hari
Balakrishnan, Robert Morris, and Scott Shenker.
Middleboxes No Longer Considered Harmful. In
Proceedings of USENIX Symposium on Operating Systems
Design and Implementation, December 2004.

