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ABSTRACT

Today’s industrial networks heavily rely on perimeter-based secu-
rity. Although this has worked well in the past, the advent of the
industrial Internet of Things (IoT) is blurring the network bound-
ary, and thereby undermining the effectiveness of perimeter-based
network defences. To address this, we propose Hopper: an indus-
trial IoT security protocol that places each network host in its own
access-controlled nano segment, thus minimizing the attack surface
introduced by connecting devices to the network. Because Hopper
enforces nano segmentation in-fabric, it does not require modifica-
tions to how packets are routed. Hopper achieves this by allowing
each network node to verify that each packet it processes is part of
a desired flow and was generated by an authorized host. Packets
that fail any of these checks are dropped en route. By leveraging
prevalent industrial network features, Hopper accomplishes low
management and bandwidth overhead while being suitable for a
wide range of networks. Our implementation on IoT-class hardware
demonstrates thatHopper achieves high throughput and scalability,
even in constrained environments.
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1 INTRODUCTION

Over the last decade, we have increasingly witnessed industrial
control systems becoming the target of sophisticated cyber attacks.
These incidents range from attacks attributed to nation state ad-
versaries, such as Stuxnet [32] and the attacks on the Ukrainian
power grid in 2015 [28], to criminal ransomware attacks, such
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as EKANS [19] and TRISIS [18]1. Contrary to more traditional
ransomware, EKANS explicitly targets industrial control systems.
TRISIS takes this approach even further by specifically targeting
the industrial safety controllers which function as a last resort to
prevent catastrophic process failures.

Although not many details about these attacks are public, a
common trend is that they rely on lateral movement through the
victim’s network in order to reach the critical systems which they
target. This approach is often successful because today’s industrial
network design practices strongly rely on perimeter protection,
often having no to very little defences in place once a perimeter
has been breached.

For many years this perimeter-based approach has served indus-
try well, but the advent of the industrial Internet of Things (IoT)
is undermining its effectiveness. For example, the increased de-
ployment of information technology (IT) systems in operational
technology (OT) (i.e., factory automation) networks is breaking
down the strong boundary between the IT and OT worlds. More-
over, trends such as (i) the increasing prevalence of cloud-assisted
devices, (ii) the increasing risk of supply-chain attacks [48], and
(iii) the increasing use of both long- and short-range wireless com-
munication [41] are blurring the network boundary futher. That is,
every device is becoming a potential attacker entry point, rendering
perimeter based defences impractical and prompting the need for
strong defences against lateral movement.

Currently, industry is responding to this trend by limiting the
movement of attackers by creatingmore—and thus smaller—network
segments, a practice referred to as micro segmentation [39]. How-
ever, traditional segmentation mechanisms (e.g., VLANs) can only
take one so far, do not scale well, and require traffic to pass through
a centralized router tomove between segments, thereby introducing
a single point of failure in the data plane. Instead, an ideal defense
must ensure that only permitted communication can take place
throughout the network, without reducing the network’s versatility.

In enterprise networks, a similar philosophy recently gained trac-
tion under the name zero trust networking [23]. However, as zero
trust networking techniques tend to leverage enterprise-oriented
security mechanisms, they are typically not suitable for the (indus-
trial) IoT. For example, the highly constrained nature of many IoT
devices renders the use of certificates challenging. Moreover, zero
trust networking focuses on the protection of resources at end-hosts,
whereas in industrial networks, the network fabric itself must be
protected as well. For instance, being able to generate cross-traffic
on a network link carrying a control signal with hard real-time
requirements can increase congestion and latency, reducing the
quality of the manufactured product [31].

To address these issues, we propose Hopper: a protocol that
combines two of the best properties of zero-trust networking and
1Also known as “Snake” and “TRITON”, respectively.
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classical network segmentation. On a Hopper network, each flow
must be explicitly authorized, and restrictions are enforced both at
end hosts, as well as in-network. Our approach de-facto results in
a per-device nano segmentation of the network, which is enforced
in-fabric. That is, in a Hopper network, the attack surface is mini-
mized by restricting the permitted communication to the minimum
required for the operation of the deployment. By enforcing this
restriction at each hop, Hopper effectively places each device in its
own nano segment.

More concretely, Hopper achieves nano segmentation by allow-
ing each network node to verify that each packet it processes (i) is
part of an explicitly whitelisted flow, and (ii) was generated by an
authorized host. Hopper is compatible with the many constraints
and networking technologies encountered in industrial IoT net-
works, allowing it to be uniformly deployed throughout a wide
range of scenarios.

Recognizing the centrallymanaged nature of industrial networks,
Hopper has a centralized control plane, but is fully distributed in the
data plane. Specifically, Hopper constructs a capability mechanism
based on a hierarchical key space that is used to uniquely bind
each packet to an authorized flow. Once distributed, authorized
senders use their capability tokens to generate authentication tags
for each transmitted packet. By distributing part of the hierarchical
key space to each node, Hopper ensures that these tags can be
independently verified at every network hop, while requiring only
minimal local node state and using only symmetric cryptography.
Further, Hopper places no assumptions on the structure of the
underlying physical network, and introduces no more per-packet
overhead than a standard authentication tag. Leveraging additional
common IoT characteristics allows us to keep this approach scalable
while maintaining flexibility.

This paper presents the following contributions:

(1) we present Hopper, the first per-device nano segmentation
scheme for industrial IoT networks;

(2) we implement and evaluate a Hopper capable host on IoT-
class hardware;

(3) we demonstrate Hopper’s scalability by implementing and
evaluating Hopper on a popular network appliance; and

(4) we show how leveraging common features of industrial IoT
deployments allows to significantly improve the scalability
of key distribution schemes.

2 BACKGROUND

2.1 Traditional Industrial Networks

The structure of industrial networks highly differs from classical
networks. The predominant model used in industrial automation
is called the automation pyramid, and is illustrated in Fig. 1. The
automation pyramid partitions the various systems found in indus-
trial networks into a set of hierarchical classes based on the type
of information processed in them. Although the pyramid is only
loosely standardized (standards disagree on the number and names
of levels), sensors and actuators can consistently be found on the
lowest levels, and tools for long-term, strategic decision making
(i.e., enterprise resource planning (ERP)) are found at the top [44].

Layer System

Sensors & ActuatorsField

PLCs & DCSsControl

SCADASupervision

MESPlanning

ERPManagement

Technology

Fieldbus

networks

IP-based

networks

Timescale
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Figure 1: The automation pyramid.

A common observation throughout the pyramid is that each
level operates at smaller timescales than the ones above it: where
management decisions are taken on the scale of months or even
years, field and control levels must operate at sub-second precision.
Because of the high demands these short timescales place on the
network, the lower levels of the automation pyramid use specialized
fieldbus networks rather than standard Ethernet/IP. For historical
reasons, many different fieldbusses are in use today, with common
examples including Modbus, PROFIBUS, and EtherCAT.

Because they run on different protocol stacks, the lower levels of
the automation pyramid are usually strongly decoupled from the top
levels of the pyramid. This practice is referred to as the separation
of information technology (IT) and operational technology (OT)
systems. The IT partition of an organization consists of the systems
used for business operations such as ERP or email. Conversely, the
OT partition consists of the systems that control physical processes
and infrastructure.

In many organizations this separation is further enforced by
laying out the network by mapping the levels of the automation
pyramid to hierarchical network segments with the primary goal
of creating strong IT/OT separation through layered perimeter
security. Such networks are commonly referend to as Purdue Model
or ISA-95 based networks [17].

2.2 Recent Evolutions in Industrial Networks

Whereas industrial networks have traditionally been protected
through IT/OT separation, recent evolutions are increasingly chal-
lenging this method, exposing industrial networks to new threats.
We discuss the most relevant of these evolutions below.

IT/OT convergence. With the rising popularity of the industrial
IoT, IT and OT systems are increasingly converging [16]. That
is, OT systems are being closely integrated with IT networks, and
thereby connected to the Internet. This convergence is exposing OT
systems to threats they were never designed to handle, prompting
the need for new protection mechanisms.

Time-Sensitive Networking (TSN). The convergence of IT and OT
systems will likely be further accelerated by the work done on TSN
by the IEEE 802.1 working group. Specifically, the TSN task group
aims to provide “guaranteed packet transport with bounded latency,
low packet delay variation and low packet loss” [26] over IEEE 802
(specifically, Ethernet) networks. The expectation is that TSN will
make Ethernet a universally suitable replacement for today’s wired
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fieldbus technologies, and will over time replace the current fieldbus
hodgepodge [34, 52]. This will push systems in the lower parts of
the automation pyramid towards IP protocols, further integrating
them with IT systems.

Cloud-assisted devices, software updates & wireless links. Tradi-
tional industrial network defenses, such as those based on the
Purdue Model, are designed to protect against adversaries attack-
ing the network from its perimeter. We provide three examples
demonstrating that this assumption no longer holds. First, a com-
mon IoT trend is to ship devices together with a companion cloud.
We are seeing a similar trend in the industrial IoT with devices
like ABB’s Ability Smart Sensor and Siemens’sMindSphere. Because
cloud-assisted devices have a permanent, direct, and encrypted con-
nection to the Internet, they violate the Purdue Model and should
be considered as a potential attacker entry point directly into the
OT network. Second, the ever-increasing complexity of industrial
devices is increasing the need for software updates. If any device’s
update process becomes compromised, these software updates can
be used as a trojan horse, converting a previously trusted device
into an adversary entry point. This also holds for devices which
are not cloud assisted. Third, the increasing use of both long- and
short-range wireless communication means that attackers can di-
rectly compromise devices without having to pass the traditional
network perimeter.

As illustrated in the examples above, many new network de-
vices should be considered as potential attacker entry points. This
significantly reduces the effectiveness of traditional network seg-
mentation as an intruder protection tool, and prompts the need for
new approaches.

2.3 Constraints in Industrial IoT Networks

Whereas TSN will likely unify the wired communications in in-
dustrial environments, many industrial IoT products, especially
those designed for monitoring, are using wireless communication.
Contrary to the situation with TSN, it is unlikely that a universal
wireless protocol will emerge in the near future. Moreover, the
requirement for long (e.g., 10-year) battery lives introduces many
(extreme) constraints for networks. In order to support deployment
throughout industrial networks, it is important for a protocol to be
able to operate under any of these constraints.

Providing a complete taxonomy of (industrial) IoT networks
and devices is out of scope for this work. Instead, we discuss the
diversity and possible limitations of the devices and networks that
we consider. We use RFC 7228 as a basis for this discussion [11].

Devices. Industrial IoT devices range frompotent, mains-powered
industrial servers running standard operating systems (e.g., HPE’s
Edgeline “converged edge systems”) to miniature “motes” with ten-
year battery lives (e.g., National Control Devices’s mesh sensors).
Throughout this range of devices, the following constraints may
be encountered:

C1: Limited state, for program code and temporary storage.
C2: Limited computation, due to low-end processors.
C3: Limited power, additionally limiting computation and se-

verely restricting wireless communication.

Networks. Similar to IoT devices, networks in IoT deployments
span a wide range of technologies and constraints. At one extreme,
IoT devices can use gigabit-speed wired connections (e.g., KUKA’s
KR C4 industrial robot controllers), while others use multi-hop
mesh networks with sub-kbps data rates and highly restricting
duty cycling (e.g., Analog Devices’s SmartMesh or Digi’s DigiMesh
products). Throughout this range of network technologies, the
following constraints may be encountered:

C4: Low data rates, due to the power constraints of the under-
lying devices.

C5: High and unstable latency, due to multi-hop networks and
energy-conservation policies of the devices.

C6: Reachability limits of duty-cycling or default-off devices.
C7: Lack of advanced network features such as multicast.
C8: Unusual routing such as the deliberate duplication of pack-

ets for redundancy reasons, or the broadcast-like nature of
flooding-based network architectures [21].

C9: Instable topologies caused, for example, by mobile nodes or
opportunistic routing.

3 ADVERSARY MODEL & SECURITY GOALS

This work considers a network model in which networks consist
of (i) links, (ii) forwarding elements, (iii) hosts, and (iv) a network
controller, which are all managed by a network administrator. We
use the generic term forwarding element to cover all network ele-
ments that forward packets. Network nodes can simultaneously be
hosts and forwarding elements, e.g., in mesh networks.

Given this network model, we consider a network-based adver-
sary which may have compromised a subset of hosts, forwarding el-
ements, and network links. The attacker can have used any method
(including physical access) to compromise these devices and links,
and has full control over them. Moreover, the attacker can com-
municate out-of-band between the points of attack. However, the
network controller and administrator must remain uncompromised.

The attacker’s goal is to increase the scope of his attack by ex-
ploiting the network. Possible attacker strategies include: (i) using
the network to compromise additional devices, (ii) sending spoofed
packets to disrupt physical processes (e.g., impersonating a sen-
sor and sending false readings), and (iii) performing denial- or
reduction-of-service attacks against the network fabric (e.g., gener-
ating traffic in order to increase network latency in critical control
loops or to reduce the lifetime of battery powered IoT deployments).

Hopper aims to mitigate such attacks by placing each device in
its own access-controlled nano-segment, thus minimizing both its
network exposure and its network access. Concretely, we define
the following security goals:

G1, Least privilege: Communication involving at least one
uncompromised host can only take place on the logical flows
explicitly whitelisted by the network administrator.

G2, Isolation: An adversary that compromised a set of net-
work elements can only generate network traffic between
these elements, or towards the union of destinations these
elements interact with under normal network operation.

G3, Authentication: Each packet is source authenticated to
its receiver, preventing the adversary from spoofing packets
from hosts that are not under its control.

3



ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan Piet De Vaere, Andrea Tulimiero, and Adrian Perrig

We explicitly do not list confidentiality as a security goal,2 but
we briefly discuss how it could be added to our design in Section 5.6.

4 HOPPER PROTOCOL

We demonstrate how nano segmentation can be achieved using the
example network shown in Fig. 2, which is based on a hydroelectric
power plant. The primary section (i.e., the main plant building) of
the network is Ethernet-based. The hosts on this part of the network
constitute everything from servers and engineering workstations
to turbine controllers and printers. Further, this section contains
the network controller and the main Internet uplink. Connected
to the primary network are a remote network (e.g., an upstream
sluice complex) and a mesh network which contains low-power
sensors mounted to the machinery in the plant. The link between
the primary and remote network section may be virtual (e.g., a VPN
tunnel) or physical (e.g., a long-range Wi-Fi link).

Because the network in Fig. 2 covers a single plant, it is admin-
istrated by a single entity (i.e., the plant’s network management
team). This is typical for industrial networks, and we refer to it as
ownership centrality. Even though the network administrator might
not be the most privileged user on all devices (e.g., in the case of
devices that are managed through a vendor-operated cloud), they
still set the policies each device should comply with, and—in the
worst case—can remove non-complying devices from the network.

Further, although industrial facilities may rely on distributed
data flows, they are typically centrally orchestrated, which we refer
to as orchestration centrality. Orchestration centrality holds for our
plower plant, but also, for example, for a smart factory, which will
be configured by its operators to execute a specific set of tasks.
Moreover, from the automation pyramid introduced in Section 2.1,
we know that these tasks are temporally stable and change at most
a couple of times a day.

The combination of ownership and orchestration centrality, to-
gether with a focus on a small number of temporally-stable, cyber-
physical workloads, is a defining characteristic for most industrial
networks. Moreover, this combination of properties makes it possi-
ble for network administrators to both compile an a priori whitelist
of legitimate flows, and establish network policies that only allows
packets that are part of a legitimate flow to use the network. When
enforced at every hop, this effectively creates a nano segment for
each device on the network, while still allowing packets to be routed
on the shortest physical path between their source and destination.

Further, industrial networks—similar to enterprise networks—
are strongly zone-oriented. In fact, network zoning is mandated
by IEC 62443 [27], the leading standard for security in industrial
networks. However, contrary to zoning in the enterprise, zoning in
OT networks is typically done based on the automation pyramid
(see Section 2.1), and different zones may contain radically different
types of devices. For example, a SCADA zone may contain standard
workstations and servers, whereas a field zone can consist of a
mesh of low-power sensors.

2An attacker who can compromise packet integrity can de facto take over control over
an industrial process, which in turn leads to a major safety risk. Because this is not the
case for compromised confidentially, integrity is considered a much more important
goal than confidentiality in industrial settings.
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Figure 2: An example industrial network.¶ represents a for-
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Õ Õrepresent a remote link. Dashed links are wireless.

Depending on the network zone, a different subset of the con-
straints listed in Section 2.3 will be encountered, changing the re-
strictions and requirements placed on (security) protocols. In order
to cope with this diversity, we design Hopper to be fundamentally
compatible with all of the listed constraints, and simultaneously
allow it to be adapted to specific deployment environments through
parameterization. This allows a single, well-understood, security
protocol to be deployed throughout the network, rather than re-
quiring a different protocol design for each type of network zone.

As of yet, no protocols allow segmentation policies to be im-
plemented homogeneously throughout the network while being
compatible with the constraints of IoT and industrial networks. In
the following subsections, we explain how we fill this void with
the design of Hopper, thereby enabling the nano segmentation
throughout industrial IoT networks.

4.1 High-Level Design

In order to meet the least privilege goal (G1) described in Section 3,
Hopper must verify that each packet is part of a whitelisted flow
at at least one point in the network: either at the receiving host
or at a forwarding element. As in mesh networks or in networks
using a shared medium it is not guaranteed that a flow traverses
a forwarding element (C8), this check must be performed on the
receiving host. However, to meet the isolation requirement (G2),
packets must be checked at each forwarding element as well. Thus,
every node in the network must verify the permissions of every
packet it processes.

The high availability requirements posed to industry require that
no single point of failure exists in the data plane. Moreover, when
the network is partitioned by the failure of a link or forwarding
element, the individual partitions of the network should remain
operational. For example, if the remote link in Fig. 2 fails, the remote
network should remain in operation. This means that packet checks
must take place without the online assistance from the centralized
controller. Further, because transceiving data in wireless (mesh)
networks consumes multiple orders of magnitude more energy than
performing (symmetric) cryptography [25, 45], nodes should be able
to verify packets using only static, node-local knowledge (C2, C3).
This requirement is further reinforced by the low data rates (C4),
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high latency (C5), limits on reachability (C6), and lack of advanced
features (C7) common to low-power wireless networks.

There are two general methods that can be used to allow nodes to
verify if a packet is part of a whitelisted flow: (i) access lists or (ii) ca-
pabilities. Because using access lists would involve disseminating
large amounts of information to each node of the network—which is
impractical in constrained networks (C1, C3–C7)—Hopper follows
a capability-based approach.

Past work on deny-by-default networking has used capabilities
in the form of authenticated source routes [14]. However, two
characteristics of industrial IoT products render such an approach
unsuitable. First, roaming nodes (e.g., a sensor mounted on an
automated guided vehicle (AGV)), duty cycling nodes, and fading
wireless links lead to dynamic and unpredictable network paths (C9).
Second, for reliability reasons, some protocols (e.g., Ethernet TSN)
include mechanisms to replicate packets in-network and to send
these packets over different paths (C8), complicating source routing.

Instead, a capability scheme that allows each node in the network
to verify the permissions of each packet in the network should
be used. Moreover, cryptographically binding together capability
tokens with their packets allows Hopper’s authentication goal (G3)
to be satisfied. However, limited computational power severely
restricts the use of asymmetric cryptography (C2, C3).

Considering these requirements, we observe many similarities
with multicast-authentication, in which many listeners must be able
to verify that a packet was generated by an authorized sender [12,
42], and we use past results from this space as a basis for Hopper.

Based on the discussion above, we designHopper to authenticate
each packet by adding a cryptographic tag to it. This tag consists of
a concatenation of multiple message authentication codes (MACs),
which are generated using keys from a hierarchical key space. By
linking the keys in this key space to the flow identifiers carried in
the packets, a capability scheme is constructed.

In order to be able to verify that packets are part of an authorized
flow, each forwarding element is provided with the state needed to
partially verify any Hopper tag. Hiding which forwarding element
verifies which part of the tag forces the adversary to consider each
forwarding element to verify the entire Hopper tag. Moreover,
using a key space with multiple levels of hierarchy allows receiving
hosts to fully verify the Hopper tags of all incoming packets.

Given the expected prevalence of UDP/IP at the lowest levels of
industrial networks, we focus our design of Hopper on this protocol
stack. Although TCP is a more popular transport at higher levels
off the automation pyramid, the trend in both IoT and industrial
standards is towards UDP in constrained environments. For exam-
ple, whereas OPC UA uses TCP on higher network levels, a UDP
mapping was specified for OPC UA over TSN [22]. Nonetheless,
Hopper’s design can be easily modified for operation on different
layers or protocol. For example, in the evaluation (Section 7), we
also implement and evaluate Hopper for L2 Ethernet.

4.2 Constructing Capability Tokens

The hierarchical key space is constructed as a forest consisting of 𝑛
trees, as shown in Fig. 3, and where 𝑛 is a configuration parameter.
The keys in the 𝑖-th tree are used to generate and verify the 𝑖-th
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Figure 3: Excerpt from a Hopper key forest for three hosts

(𝑎, 𝑏, and 𝑐) and two ports (𝛼 and 𝛽).

MAC in the Hopper tag. The root of each tree 𝑖 is a random secret,
denoted 𝑘𝑖 . The set of all roots

K = {𝑘𝑖 | 𝑖 ∈ [𝑛]} with [𝑛] := {1, . . . , 𝑛}
is called the root key set and is only fully known to the network
controller, with subsets being distributed to all forwarding elements.
Further, for each receiver 𝑟 , a receiver set

K𝑟 =
{
𝑘𝑟𝑖 = PRF𝑘𝑖 (𝑟 )

�� 𝑖 ∈ [𝑛]}
of receiver keys is derived from K . PRF𝑘𝑖 is a pseudorandom func-
tion keyed with 𝑘𝑖 .3 The receivers store these keys locally and use
them to verify incoming packets.

If the network controller wants to issue a capability token for
host 𝑠 to communicate with host 𝑟 on UDP port 𝑝 , it generates the
flow set

K𝑟←𝑠 :𝑝 =

{
𝑘
𝑟←𝑠 :𝑝
𝑖

= PRF𝑘𝑟
𝑖
(𝑠 ∥𝑝)

��� 𝑖 ∈ [𝑛]}
and provides it to host 𝑠 . “∥” represents string concatenation.

4.3 Sending and Verifying Packets

Once a host receives a flow set, it can send on the corresponding
flow. To send a packet, the host calculates a tag 𝜏 consisting of one
MAC over the packet payload for each key in the flow key set, i.e.,

𝜏 = MAC(𝑘𝑟←𝑠 :𝑝
1 , payload)∥ . . . ∥MAC(𝑘𝑟←𝑠 :𝑝

𝑛 , payload)
and adds it to the packet. Because the cryptographic strength of 𝜏 is
dependent on its full length, the individual MACs can be short [12].

While the packet traverses the network, each forwarding ele-
ment it encounters verifies the MACs for which it can derive the
flow key using the packet’s header info; i.e., the MACs at the po-
sitions for which it has the root secrets. If any of these MACs are
incorrect, the packet is dropped and reported to the network con-
troller, signalizing the presence of an attacker. The receiver always
verifies the entire Hopper tag by deriving the flow key set from its
receiver key set using the information in the packet header.

4.4 Distributing Root Keys

By provisioning forwarding elements with subsets of the root key
set,Hopper allows each forwarding element to partially verify each
Hopper tag without them being able to forge valid tags. However,
properly distributing the root keys is a complex problem, as a good
3In practice, a block cipher encryption operation can be used to implement the PRF.
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distribution scheme must satisfy two contradicting goals: (i) as
much of the Hopper tag as possible must be verified as early in the
network as possible, and (ii) when an attacker compromises one or
more forwarding elements, he should not learn a sufficient number
of root keys to forge Hopper tags.

The first of these goals ensures that packets are dropped early,
which minimizes their effect on the network. Intuitively this can be
achieved by provisioning each forwarding element with as many
keys as possible, thus ensuring that it can verify a large part of the
Hopper tag. Yet, this conflicts with the second goal, as it makes it
easier for an attacker to learn the full root key set. In addition, a
good key-distribution scheme should ensure that even when the
attacker has compromised some keying material, forged packets
will still be dropped as close to the sender as possible.

Inspired by multicast security, we propose three key distribution
schemes: cover-free families [42], random, and manual distribution.

Cover-free families are combinatorial constructs on sets: An
(𝑚,𝑛, 𝑡)-cover-free family is a family of 𝑚 subsets on a ground
set of size 𝑛, so that none of the sets in the family is a subset of the
union of 𝑡 other sets in the family. Considering a network with𝑚
forwarding elements and a root key set of size 𝑛, we can assign each
forwarding element the keys from a set from a (𝑚,𝑛, 𝑡)-cover-free
family over the root key set. This guarantees that even when 𝑡

forwarding elements are compromised, each forwarding element
will still verify at least one MAC for which the adversary did not
obtain the key. Unfortunately constructing cover-free families with
large𝑚 and 𝑡 is considered a hard problem [42].

Random distribution of the root keys avoids the construction
problems of cover-free families. Consider again a root key set of
size 𝑛, of which each key is now assigned to each forwarding el-
ement with probability 𝑝 . This ensures that, in expectation, each
forwarding element verifies 𝑛 · 𝑝 MACs per packet. When 𝑡 nodes
are compromised, the adversary will have obtained the full root key
set with 𝑃compromise (𝑡) =

(
1 − (1 − 𝑝)𝑡

)𝑛 . The expected number of
compromised keys is 𝑛 ·

(
1 − (1 − 𝑝)𝑡

)
.

For example, setting 𝑛 = 10 and 𝑝 = 0.2, results in each forward-
ing element verifying 2 MACs on average. However, even if the
adversary compromises 𝑡 = 5 forwarding elements, it will have
obtained the full root set with probability of only 𝑃compromise (5) =
0.018 %, and is expected to know only 6.7 keys. Figure 4 shows how
𝑃compromise (𝑡) varies for various values of 𝑛, 𝑝 , and 𝑡 . Interestingly,

for a given value of 𝑡 , 𝑃compromise (𝑡) is independent of the total
number of forwarding elements in the deployment.

Manual distribution of the root keys can be useful for small de-
ployments. However, as it is hard to perform a systematic evaluation
of this strategy, this work focuses on random distribution.

Regardless of the key distribution scheme, a compromised for-
warding element will leak part of the root key set. Such leakage
reduces the effective strength of the Hopper tag, as the adversary
needs to guess fewer tag bits. Moreover, when random root key
distribution is used, the adversary might be able to compute all
MACs verified at a specific forwarding element. Nonetheless, even
when the attacker lacks a single root key, it is highly likely that
the adversary’s presence on the network will be detected. This is
because (i) the receiving host always verifies the full tag, (ii) tags are
different for each packet, and (iii) generating a single bad tag will
lead to the tag verification failing (either at a forwarding element
or at the receiver) and the network controller being notified.

4.5 Security Equivalence & Network Dichotomy

Both cover-free families and random distribution schemes are effec-
tive to make Hopper resistant against the compromise of a small
number of forwarding elements. However, IoT deployments can be
highly homogeneous and can consist of thousands of nodes. More-
over, in industrial networks the same type of sensor or actuator
is often reused throughout a network or facility. In such settings
it is likely that when one device is compromised, many will be.
This especially holds if the initial node was compromised using
a network attack, as the marginal cost to compromise additional
nodes will be close to zero. After all, these nodes are likely to run
similar software in similar configurations.

While this may seem troublesome at first, we show how the
introduction of security equivalence classes canmitigate the negative
effects that homogeneity has on Hopper’s resilience. Moreover, we
highlight how the dichotomy found in most infrastructure-based
networks further increases resilience.

Security equivalence. Typically, the robustness of key distribution
schemes is expressed in the number of devices that can be compro-
mised before security breaks. However, as discussed above, in IoT
deployments it is likely that if a single device is compromised, many
devices will be. We formalize this notion by partitioning forwarding
elements in security equivalence classes. Concretely, we assume that
either all devices in a security equivalence class are compromised,
or that none are. We observe that under this assumption, there is
no security benefit in provisioning the forwarding elements within
one equivalence class with different root keys. Specifically, when
an equivalence class is compromised, all the keys present in the
class will be known to the adversary regardless of how they are
distributed. Similarly, when the class is not compromised, provi-
sioning all root keys known to the class to each of its members
ensures that as much of the Hopper tag as possible is verified by
each element.

Distributing root keys to security equivalence classes rather
than to individual devices significantly increases the scalability of
Hopper: instead of tolerating the compromise of 𝑡 devices, Hopper
now tolerates the compromise of up to 𝑡 device classes. As for
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Table 1: Effect of various parameters on Hopper perfor-

mance, assuming random root key distribution.
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𝑛 Size of root key set ▲. ▲. – ▼ ▲ ▲.
𝑚 # forwarding elements – – – – – –

𝑝 Key sampling prob. – – ▲. ▼† ▼. –

𝑙 Individual MAC length – – – ▼ – ▲.

Triangles indicate the properties’ direction of change if the corresponding

parameter increases. ▼/▲ indicates a desirable direction of change, ▼. /▲. a
deterioration.

†
Forged tags more likely to be detected early in network.

hybrid host-forwarding element devices there is no security benefit
in having devices share receiver keys, we only apply this strategy
to root keys. Doing so ensures that when a security equivalence
class would nonetheless be only partially compromised, Hopper’s
end-to-end properties still hold within that class.

How to divide an IoT network into security equivalence classes
is an exercise that must be made individually for each network.
More broadly speaking, finding optimal partition schemes for a
given network opens up an interesting avenue for future research.
For example, when defending against network-based attacks, the
primary device properties to consider are the logical network layout,
device types, and configurations. Conversely, when physical attacks
are the primary concern, all devices in the same physical access
zone can be combined in a security equivalence class.

Network dichotomy. Most infrastructure-based IoT networks,
much like traditional computer networks, display a clear split be-
tween hosts, and forwarding elements. We refer to this as network
dichotomy. As in such networks the hosts do not forward packets,
they do not hold root keys. Hence, no number of compromised
hosts will lead to the exposure of the root keys. Additionally, the
forwarding elements, which do hold root keys, will be fewer in
numbers and are typically more hardened then hosts connected to
them.4 This further increases Hopper’s resilience to node compro-
mise. We note that a similar observation was made in the multicast
authentication setting by Canetti et al. [12].

5 PRACTICAL CONSIDERATIONS

5.1 Rekeying and Revocation

As part of standard security practices, Hopper networks should
be periodically rekeyed. Maintaining a symmetric key for each
controller-host pair allows the network controller to securely com-
municate the updated Hopper keys with each network device,
meaning that rekeying can be automated. By using a hierarchi-
cal key system similar to a tree in a Hopper forrest, the secure
storage requirements on the network controller can be minimized.
In the case the network was compromised and part of the root key
set was exposed, a rekeying of the network is also required.

4For example WiFi access points and backbone forwarding elements are likely to be
more hardened than the low-cost IoT devices connected to them.

Periodic rekeying also prevents hosts from accumulating capa-
bilities. That is, Hopper requires each node to discard capabilities
(i.e., flow key sets) upon receiving a revocation notice. Because
uncompromised devices can generally be expected to behave as
specified, in most circumstances this is sufficient. Still, periodic
rekeying ensures that also the network permissions of (dormant)
malicious hosts are periodically reset. By (i) using keys with over-
lapping validity periods, and (ii) performing rekeying together with
production reconfiguration events, the impact of rekeying events
on the physical process can be minimized. Coinciding rekeying
events with a production reconfiguration further makes sense, as
only during such events new flow keys, the accumulation of which
we wish to prevent, are issued.

5.2 Handling Network Diversity

Hopper has a number of parameters that can be adjusted depending
on the needs of the network or zone it is deployed in. For example,
when deployed in a mesh-like network, Hopper tags should consist
of possiblymany (𝑛 is large), but short (𝑙 is small) MACs. Conversely,
when deployed on a network with only a single forwarding element
(e.g., a network with a single gateway and a star topology), tags
could consist of a single (𝑛 is small), but long (𝑙 is large) tag. This
flexibility allows a single, well-understood, protocol (i.e., Hopper)
to be used in a wide range of settings rather than requiring the
design of one-off protocols for each new setting.

Table 1 summarizes how different parameters influenceHopper’s
performance. We note that the number of forwarding elements in
the network does not influence the data-path overhead introduced
by Hopper.

Besides modifying Hopper’s basic parameter, it is also possible
to adapt Hopper for operation on different protocols or layers. This
is done by adapting Hopper’s key space, for example by deriv-
ing Hopper keys based on Ethernet instead of IP addresses. For
other protocols the required changes can be more significant. For
instance, in multi-receiver protocols the flow keys must be dis-
tributed between the receivers in a similar manner as the root keys
are distributed to forwarding elements.

5.3 Connecting Networks

Hopper’s centralized control gives rise to a natural notion of Hop-
per domains: regions of the network sharing a set of Hopper root
keys and parameters. When packets cross the borders of a Hop-
per domain, Hopper tags must be removed from, or added to, the
packet. This is done by Hopper gateways, an extended version of
the Hopper delegates introduced in Section 5.5.

For outgoing traffic the gateway verifies theHopper tag, removes
it from the packets, and transmits the packet over its outgoing in-
terface. For incoming traffic, the gateway functions similarly to a
firewall in drop-by-default mode: the gateway verifies if the traffic is
part of a whitelisted flow, and if so attaches the corresponding Hop-
per tag to the packet before forwarding it to the domain-internal
destination. If the traffic is not whitelisted, it is dropped. Gateways
must have access to the flow keys for each flow that traverses them.
As gateways are typically part of the network infrastructure and
do not suffer from the constraints listed in Section 2.3, this is a
reasonable requirement.
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5.4 Management Overhead

As Hopper was designed to require explicit whitelisting for every
flow, it naturally introduces administrator overhead to the network.
Specifically, overhead is created (i) when new devices are added to
the network, and (ii) when a new workload is deployed. We proceed
to quantify the overhead introduced by each of those events.

New devices. When a new device is added to the network, it
must be provisioned with a minimum of keying material in order
to be able to start communicating. When a key provisioning server
and bootstrapping mechanism similar to the ones described in
Section 5.7 are used, each new device needs to be provisioned
with only a single set of flow keys. This creates an administration
overhead that is comparable to provisioning devices with WPA-
Enterprise credentials.

New workloads. When a new workload is configured, flow keys
must be created and distributed for each required flow. Also the
overhead of this operation can be significantly reduced through the
use of a key provisioning server as described in Section 5.7. Con-
cretely, when using a key provisioning server, the administrator
overhead required to authorize a new flow is comparable to over-
head in the (hypothetical) case were all devices must communicate
through a centrally-managed, drop-by-default firewall.

Although the introduced overhead can appear high at first, it
is worth noting that beside the security aspects discussed before,
Hopper’s whitelist-based approach also provides another valuable
property: transparency of network assets. From our interactions
with industry practitioners, we have learned that a lack of insight
into the devices and flows present in industrial deployments is a
real problem that is often encountered when performing a security
assessment of industrial networks. Hopper alleviates this problem
by having a security-by-design approach that requires all devices
and flows to be listed (and therefore inventoried) before they can
participate in the network.

Further, we observe that the set of flows that need to bewhitelisted
is a direct function of the workload placed on an industrial de-
ployment. This opens opportunities to integrate Hopper whitelist
management into production management, which could lead to a
significant reduction of management overhead.

5.5 Legacy Compatibility

Industrial installations often have lifetimes that can reach in to the
tens of years, during which they are incrementally updated. This
means that it is important for new industrial systems and protocols
to be brownfield compatible, i.e., be able to operate in coexistence
with legacy systems. When naively deploying Hopper alongside
non-Hopper aware protocols and devices, security issues may arise.
For example, an adversary may be able to mount a downgrade
attack by removing the Hopper header from a packet.

In this section, we discuss howHopper can be securely deployed
alongside legacy systems. We split this discussion into two orthogo-
nal parts: interoperability with legacy networking nodes (i.e., hosts
and forwarding elements), and interoperability with legacy net-
working protocols.

Legacy Nodes. We propose three brownfield strategies that allow
Hopper to be deployed on a network with legacy nodes: (i) Hopper
delegates, (ii) zone-based deployment, and (iii) an overlay strategy.

As its name suggests, the first strategy introduces the concept of
a Hopper delegate, which is used to connect hosts that are not Hop-
per-aware to the network. All traffic from/to the Hopper-unaware
host is routed over its delegate before entering/leaving the Hop-
per domain. The delegate holds the Hopper keys of the host and
adds, checks and removes Hopper tags on behalf of the host. By
implementing delegatee functionality in access switches, this can
be accomplished with minimal management overhead and while
maintaining all of Hopper’s core properties.

When using the zone-based strategy, Hopper-aware network
nodes are deployed grouped in zones. These zones are then con-
nected to the non-Hopper aware parts of the network using gate-
ways which add and remove the Hopper headers as needed. The
concept of a Hopper gateway is discussed in more detail in Sec-
tion 5.3. While this strategy maintains Hopper’s properties within
individual zones, inter-zone traffic travels between its source and
destination zones without Hopper’s protections.

The overlay strategy is similar to the zone-based strategy, but
rather than removing the Hopper headers at the edge of a Hopper
zone, traffic is tunneled between Hopper zones to create virtual
Hopper-aware links. This preserves theHopper headers and allows
multiple zones to be operated as a single Hopper domain, mean-
ing that Hopper’s traffic properties are maintained end-to-end.
However, as the virtual Hopper links may share their underly-
ing physical links with legacy traffic, they can be susceptible to
denial-of-service attacks.

Regardless of the brownfield strategy, using the extension op-
tions provided by existing protocols (e.g., “next protocol” header
fields or extensions), allows Hopper to be implemented transpar-
ently for Hopper-unaware forwarding elements. This results in a
network (zone) where Hopper-aware forwarding elements verify
the Hopper header, while Hopper-unaware forwarding elements
simply forward the packets without checks. This is similar to how
VLAN-unaware routers are able to forward VLAN-tagged traffic
and should work out-of-the-box, reserving interference caused by
network middleboxes.

Legacy protocols. Because traditional network protocols are de-
signed to make communicating as easy as possible, some of these
protocols are at odds with Hopper’s design principles. Specifi-
cally, decentralized auto-configuration and auto-discovery proto-
cols, such as Address Resolution Protocol (ARP), do not fit the
deny-by-default paradigm. That is, these protocols (i) are explicitly
designed to facilitate unplanned communication, and (ii) typically
require broadcast communication, allowing each node to contact
each other node. This stands in contrasts to Hopper’s design goals
that limit network permissions to the absolute minimum.

When deploying Hopper, a threat analysis of these legacy pro-
tocols must be made. If the attack surface created by the protocol
is sufficiently small, no changes are needed. However, if the pro-
tocol exposes a large attack surface, it must be eliminated. This
can either be accomplished by statically configuring the normally
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auto-configured state (e.g., pre-populating ARP tables), or by re-
placing the decentralized protocol by a centralized one. We provide
an example of the latter approach in Section 5.7.

5.6 Encrypting Packets

Hopper is not designed to provide confidentiality. However, the key
distribution mechanism used byHopper can be modified to support
per-flow, end-to-end encryption. An encryption key for a flow can
be established either by cryptographically combining all flow keys
into a single encryption key, or by adding a dedicated encryption
tree to theHopper key forrest. The receiver and flow keys from this
tree are distributed as normal, but the root key is not distributed
to any forwarding elements. Both methods guarantee that only
the sender and receiver of a flow (and the network controller) can
calculate the encryption key.

5.7 BOOTSTRAPPING AND PROVISIONING

Hopper does not specify a specific bootstrapping or key provi-
sioning method. Nonetheless, in this section we explore how a
practical key distribution system can be accomplished. Concretely,
we do so by extending the functionality of the network controller
to distribute Hopper keys through the network.

As Hopper is a strict capability-based network architecture, all
hosts require a minimum of state before they can start commu-
nicating, even with the controller. Moreover, in order to securely
exchange keys between the controller and a host, a confidential
and authentic channel between them must be established.

The first requirement can be achieved by pre-provisioning each
device with flow keys for the flow from the device to the controller.
For example, through physical contact following a resurrecting
duckling model [47]. To meet the second requirement, we observe
that at any point in time, only three entities can generate all valid
flow keys for a given flow: (i) the sender, which owns the flow keys;
(ii) the receiver, which can derive them from his receiver keys; and
(iii) the controller, which can derive any key from the root keys.

Because during communication with the controller the receiver
and the controller are the same entity, the controller can uniquely
authenticate any device from the packet’s Hopper tag. Thus, the
flow keys can be used as shared keying material to bootstrap an
authenticated and encrypted channel between any device and the
controller. Once this channel is established the device can send a
key request to the controller, which verifies the request against an
internal policy file and sends the appropriate receiver and flow keys
to the device. At this point, the device and controller can also agree
on additional keying material to be used to for network recovery
when the root key set is compromised.

In the case of hybrid host–forwarding element devices, the con-
troller can also supply the root keys for the forwarding elements in
this manner. This allows the network to be cold-started in a hop-
by-hop fashion. Moreover, as the controller has a full view of the
network, it can also distribute otherwise dynamically discovered
information, such as link-layer addresses, together with flow keys.

6 SECURITY ANALYSIS

As introduced in Section 3, a Hopper network consists of four sets
of elements: (i) network links, (ii) forwarding elements, (iii) hosts,

and (iv) the network controller. Motivated by ownership and or-
chestration centrality, Hopper leverages the administrator, and by
extension the network controller, as the trust root of the system.
Hence, the network controller is uncompromised by assumption.
This section analyses the consequences of attacks against each
remaining network element. Devices which both act as host and
forwarding element are susceptible to attacks relating to both de-
vices classes. Moreover, as both hosts and forwarding elements
have link access, link-related attacks are also applicable to them.

Network links. An adversary with access to a network link, either
wired or wireless, can observe, drop5, duplicate, replay, or inject
packets on that link. We now discuss the effect of each of these
actions on the three security goals listed in Section 3.

Observing packets does not violate any of Hopper’s security
goals. Moreover, as each HopperMAC uses full-length keys, key
extraction—which would facilitate injection attacks—is not feasible.

Dropping packets can be used to mount a denial-of-service (DoS)
attack, but only against the compromised link, therefore it does not
violate the isolation (G2) or other security goals.

Duplicating or replaying packets can also be used to mount DoS
attacks, but can only create traffic towards the destination hosts
of flows that traverse a compromised link, and hence does not
violate the isolation (G2) or other security goals. Moreover, imple-
menting in-network duplicate suppression can further limit the
scope of duplication attacks. Many IoT oriented wireless protocols
already include explicit replay protection mechanisms (e.g., Blue-
tooth Mesh [9], the IETF’s IPv6 Routing Protocol for Low-Power
and Lossy Networks (RPL) [3], and IEEE 802.15.4 [43]), and the TSN
task group has also specified duplicate elimination for Ethernet
networks in IEEE 802.1CB-2017 [1].6

If injecting forged packets on a link is possible, each forwarding
element will detect and drop each forged packet with probability
1 − 2−𝑙 |𝑆 | , where |𝑙 | is the length of each MAC in bits, and |𝑆 |
the number of root keys known to the forwarding element. When
using random distribution, 𝐸 [|𝑆 |] = 𝑝𝑛, with 𝑝 the key sampling
probability, and 𝑛 the size of the root key set. When using cover-
free families, |𝑆 | is the size of sets in the family. After injecting 𝑐
packets, the in-network detection probability of the adversary is
𝑝detection, network = 1−2−𝑙 |𝑆 |

∑𝑐
𝑖=1 {ℎ (𝑖) } , whereℎ(𝑖) is the number of

forwarding elements traversed by the 𝑖-th packet. This probability
quickly tends to 1. The isolation (G2) goals is thus probabilistically
satisfied. Further, forged packets will be detected with probability
1−2−𝑙𝑛 ≈ 1 by each end host. For 𝑐 packets, the detection probability
becomes 𝑝detection, host = 1 − 2−𝑙𝑛𝑐 which also quickly tends to 1,
satisfying the least privilege (G1) and authentication (G3) goals.

Forwarding elements. When an adversary compromises one or
more forwarding elements, he learns part of the root key, lead-
ing to the modified detection probabilities 𝑝 ′detection, network = 1 −
2−𝑙 |𝑆

′ |∑𝑐
𝑖=1 {ℎ (𝑖) } and 𝑝 ′detection, host = 1 − 2−𝑙𝑛

′𝑐 , where 𝑛′ is the
number of uncompromised root keys. When random root key dis-
tribution is used, the expected value of 𝑛′ can be calculated us-
ing the equations in Section 4.4. When using a (m,n,t)-cover-free

5Or jam, in the case of wireless links.
6The duplicate frame elimination specified IEEE 802.1CB-2017 is not explicitly designed
as a security mechanism, but rather as part of a reliability mechanism.
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family, 𝑛′ ≥ 1 as long as less than 𝑡 forwarding elements have
been compromised. |𝑆 ′ | is the number of uncompromised root keys
known to a forwarding element. For random root key distribution
𝐸 [|𝑆 ′ |] = 𝑝𝑛′. When using a cover-free family, |𝑆 ′ | ≥ 1 as long
as less than 𝑡 forwarding elements have been compromised. As
both 𝑝 ′detection, network and 𝑝

′
detection, host tend to 1 as long as not all

root keys are compromised, least privilege (G1), isolation (G2), and
authentication (G3) remain probabilistically satisfied.

Hosts. If an adversary compromises a host, he obtains access to
the receiver and flow keys stored on that device. The flow keys
can be used to send arbitrary packets towards their corresponding
receivers, but not towards other hosts, thus not violating the least
privilege (G1) and isolation (G2) goals.

When an adversary has compromised multiple hosts, and can
communicate between them, he can exchange the compromised
receiver and flow keys between these hosts. The receiver keys allow
the compromised hosts to generate and send traffic towards each
other. The flow keys allow each host to generate traffic on the
logical flows corresponding to the compromised flow keys, and
to send that traffic towards the receiver of these flows. Neither
of these attacks violates the least privilege (G1), isolation (G2), or
authentication (G3) goals. Moreover, in networks where topology
based packet filtering is possible, the significance of the second
attack can be further reduced.

6.1 Mitigation of Today’s Common IoT Threats

Deploying Hopper on a network can mitigate common threats
against IoT devices seen today. We discuss three examples.

Botnets. Since the Mirai botnet demonstrated the destructive
power of large-scale IoT attacks, botnets have been a major IoT se-
curity concern [5, 39]. Because IoT botnets are usually constructed
by finding inadvertently vulnerable devices through network scans,
Hopper’s whitelist-based approach provides a strong defense against
device compromise. Moreover, because the number of destinations a
Hopper-enabled host can send traffic to is severely limited, Hopper
devices are not attractive botnet members.

Worms. Whereas the focus of IoT attackers used to be on con-
structing botnets to perform DoS attacks, their focus has shifted
towards IoTworms, such as cryptolockers [18, 19, 39]. BecauseHop-
per’s nano segmentation minimizes the number of potential vic-
tims an infected host can reach, the spreading of worms is severely
restricted. This stands in contrast to to traditional segmentation
methods where worms can spread freely within each segment.

Lateral movement. In many attacks against IoT devices, the com-
promised devices are not the primary attack target, but are used
as entry points for further lateral movement in the network [39].
Similarly to how Hopper defends against worms, Hopper’s nano
segmentation significantly reduces the number of new attack vec-
tors available to an attacker after compromising a device.

7 IMPLEMENTATION AND EVALUATION

We split the evaluation of Hopper into four subsections. First, we
perform a scalability analysis of the protocol. Second, we evaluate
the performance of a Hopper-enabled end host. In order to verify

that Hopper is suitable for constrained environments, we perform
this evaluation on IoT-class hardware. Third, we evaluate a Hopper
forwarding element by implementing Hopper forwarding logic on
a low-end network appliance and benchmarking this appliance by
physically connecting it to an emulated network. Finally, we briefly
report on our implementation of a Hopper controller and confirm
interoperability between Hopper’s network elements.

7.1 Scalability

We evaluate the scalability of Hopper on the three active elements
of aHopper network: (i) hosts, (ii) forwarding elements, and (iii) the
network controller. We also discuss bandwidth overhead.

Hosts. Hosts need to store one set of receiving keys and one
set of flow keys for each outgoing flow. More formally, hosts need
to store 𝑛 · (𝑓 + 1) · |𝑘 | bytes, where 𝑛 is the size of the root key
set, 𝑓 the number of outgoing flows of that host, the constant “1”
represents the receiver key set, and |𝑘 | is the size of an individual
key. As shown in Table 1, 𝑛 is not a function of the size of the
deployment, but rather of the number of compromised forwarding
elements that can be tolerated. The computational overhead per
packet is constant in the size of the deployment: for each incoming
or outgoing packet 𝑛 MACs must be calculated, and for incoming
packets an additional 𝑛 key derivations must be performed.

Forwarding elements. Assuming random root key distribution,
forwarding elements need to store 𝑝 · 𝑛 · |𝑘 | bytes, where 𝑝 is the
key sampling probability. Also here computational overhead per
packet is constant in the size of the deployment: each forwarded
packet requires 2 · 𝑝 ·𝑛 key derivations and 𝑝 ·𝑛 MACs calculations.

Network controller. For each rekeying event, the network con-
troller must distribute new root keys to the forwarding elements,
receiver keys to the receiving hosts, and flow keys to the sending
hosts. However, rekeying events are rare and take place on the
control rather than data plane. Therefore the performance of the
network controller is not critical to Hopper’s overall performance.

Bandwidth overhead. Each packet must carry a tag of length 𝑛 · 𝑙
bytes, where 𝑙 is the length of an individual MAC. As discussed in
Section 5.2, 𝑛 and 𝑙 are constant in the size of the deployment.

7.2 End Host Performance

We evaluate Hopper’s end host performance using two ST Nucleo-
F439ZI development boards. These boards carry a STM32F439ZI
microcontroller unit (MCU) which runs at 180 MHz, representing
mid-range IoT devices. The MCU provides hardware cryptography
acceleration, a common feature on IoT MCUs to support link-layer
encryption. The boards also have on-board 10/100 Mbps Ethernet,
facilitating evaluation in an isolated and reproducible environment.

We implement two versions of Hopper: one for UDP/IP, as de-
scribed in Section 4, and one for Ethernet, where we use the source
address, destination address and L3 protocol as flow identifier.

Both Hopper versions extend the open-source lwIP (lightweight
IP) protocol stack [20] to support Hopper tag generation and veri-
fication. Our Hopper implementation for Ethernet defines a new
EtherType and places tags directly behind the Ethernet header. The
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Figure 6: Simplified end host load profile for Hopper on UDP/IP using 10 MACs per tag.

implementation for UDP/IP defines a new IP protocol number and
places tags between the IP and UDP headers.

To perform the evaluation, the two boards are directly connected
using an Ethernet cable. During each experiment one board continu-
ously generates UDP datagrams (or Ethernet frames) with a dummy
payload. The other board receives these datagrams (or frames) and
processes their headers. No higher layer processing is performed.

We evaluate each Hopper implementation using both hardware-
accelerated and software crypto. In the hardware setting we use
AES128 as block cipher and SHA256 as hash algorithm. In the soft-
ware setting we use the Speck software cipher [8] with 64-bit blocks,
and use BLAKE3 [37] as hash algorithm. PRFs are implemented
using the block cipher in ECB mode, keys are always 128 bits long.

The hardware ciphers were chosen because our evaluation plat-
form provides hardware acceleration for them. Different software
ciphers where selected for performance reasons: using Speck in-
stead of an AES software implementation [30] resulted in a through-
put improvement of roughly 5 to 100 %, depending on the setting.
Similarly, using BLAKE3 instead of software SHA256 [36] resulted
in throughput gains of 35 to 100 %.

Further, we evaluate each Hopper implementation in each cryp-
tography setting in two tag composition settings. The first tag
setting uses tags consisting of ten 16-bit MACs calculated using
CBC-MAC over a hash of the packet payload.7 We note that hash-
then-MAC is a provably secure construct [10]. The second tag
setting uses tags consisting of a single 128-bit MAC for hardware
crypto and a single 64-bit MAC8 for software crypto.

7We use CBC-MAC, as the hash algorithms ensure constant input sizes.
864 bits corresponds to native Speck block size on a 32-bit architecture. Brute forcing
a 64-bit MAC using minimal Hopper packets over a gigabit link would, in expectation,
take on the order of 105 years.

Because the results for Hopper on Ethernet and on UDP/IP are
near identical, we only discuss the latter in this section. The results
for Ethernet are shown in Appendix A.

Hardware cryptography. We see in Fig. 5 that when using hard-
ware crypto and one MAC, Hopper packets can be generated (Tx,
94 Mbps) and processed (Rx, 89 Mbps) at 99 % and 93 % the rate of
plain UDP/IP (96 Mbps), respectively. The header space required by
Hopper leads to a slight reduction in maximum payload compared
to plain UDP/IP. When using ten MACs, we observe packet gener-
ation (67 Mbps) and processing (49 Mbps) rates of 70 % and 52 %
the rate of plain UDP/IP, respectively. As can be seen from the load
profiles in Fig. 6, the discrepancy between the results for incoming
and outgoing packet is caused by the flow-key derivations required
on the receiving endpoint. Key caching or probabilistic MAC evalu-
ation could mitigate this performance gap, though the latter would
lead to a reduction in security. Figure 6 also shows that the majority
of Hopper’s workload consists of cryptographic operations. It is
worth noting that when using hardware crypto acceleration, these
operations are executed by the MCU’s cryptography peripheral,
leaving the core free to perform other tasks.

Software cryptography. As shown in Fig. 5, when using soft-
ware cryptography, througputs between 28 Mbps and 19 Mbps are
achieved. This corresponds to 29 and 20 % the rate of plain UDP/IP.
The dip in performance at 1024 bytes is inherited from BLAKE3. As
shown in Fig. 6 the performance is dominated by the hash function.

Given the low data-rates typically found in IoT and industrial
applications9, we find the obtained performance results to be sat-
isfactory. Although the use of software cryptography results in a
significant performance penalty, most MCUs targeted at IoT ap-
plications already provide hardware cryptography acceleration to
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support link-layer encryption. Hence, we expect software cryp-
tography to only be used in the most constrained settings, which
typically feature low throughput requirements.

Binary size. The MCU binaries for the tests without Hopper,
with hardware crypto, and with software crypto were 75, 100, and
113 kB in size respectively. These binaries were compiled for optimal
performance. When compiling for an optimized binary footprint,
the sizes reduce to 61, 78, and 89 kB, respectively. Doing so results
in a throughput reduction of 0 to 15 %, depending on the setting.

7.3 Forwarding Element Performance

We implement a Hopper forwarding element using a PC Engines
APU2D4 system board. The APU2 is a popular platform for low-end
network appliances, and with a quad-core AMD GX-412TC CPU
running at 1 GHz and 4 GB DDR3-1333 memory, its performance
is roughly comparable to a Raspberry Pi 4. The board also has
3 Gigabit Ethernet interfaces.

We implement the Hopper forwarding logic for UDP/IP using
DPDK [49] and OpenSSL [38]. For each packet the forwarding
element receives, it verifies theHopper tag using the root keys with
which it was provisioned. If successful, the packet is forwarded
without further processing. If the verification fails the packet is
dropped. The forwarding element uses AES128 as block cipher and
SHA256 as hash algorithm. PRFs are implemented using AES128 in
ECB mode. We use Hopper tags with 10 MACs of 16 bits each.

9For example, the Ethernet Advanced Physical Layer (Ethernet-APL), a recently devel-
oped physical layer for Ethernet which is targeted specifically at industrial applications,
operates at only 10 Mbit/s [2].
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Test traffic generation. We create a gopacket [24] implementation
of Hopper. For each experiment, we first generate a pool of ran-
domized 5-tuples. We then generate Hopper packets by randomly
sampling (with replacement) 5-tuples from this pool, and adding a
random payload. The generated packets are then stored in a pcap
file to be replayed using tcpreplay during the experiment.

Throughput. To measure the forwarding element’s throughput,
we physically connect it to two hosts that each emulate a network,
as illustrated in Fig. 7. We then let the source host transmit 106
packets at line rate and measure the incoming traffic volume at the
receiver host. We repeat this experiment multiple times varying the
number of root keys the forwarding element is provisioned with.
We also perform a baseline measurement in which the forwarding
element immediately forwards all packets without parsing them.

We see in Fig. 8 that for small packets, or when verifying only one
MAC, using Hopper does not meaningfully reduce the forwarding
element’s throughput. When verifying 2 MACs, performance is
reduced by approximately 10 % to 890 Mbps. Verifying all 10 MACs
results in a throughput of 565 Mbps.

Scalability. In Section 7.1, we showed that scaling the size of
a Hopper deployment does not influence the performance of the
forwarding elements. We now verify this result by varying the
size of the 5-tuple pool (which effectively corresponds to changing
the size of the emulated network), and rerunning the throughput
experiments. For these experiments we configure the forwarding
element to verify 2 MACs per packet.

Figure 9 shows that, somewhat counterintuitively, increasing
the number of network flows increases the throughput of the for-
warding element. This is a side effect of the hash-based receiver
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side scaling used by DPDK: the larger the set of flows, the more
uniformly the workload is spread across the four processor cores.
We verified this hypothesis by running the same experiment using
only a single processor core, and we observe that doing so results
in identical throughput regardless of the traffic mix (not shown).

Latency. We evaluate the latency added to the forwarding ele-
ment by the Hopper checks. We again use the test setup shown in
Fig. 7, but now emulate both the source and destination network
on the same host, using different host interfaces. In each test set-
ting, we transmit 103 packets, one at a time, and we capture the
kernel-generated send and receive timestamps of each packet using
tcpdump. We also measure two baselines: one using a loopback
cable which bridges the source and destination interface on the
emulation host, and one in which we configured DPDK to directly
forward all packets without performing any checks or parsing.

The results of the latency measurements are shown in Fig. 10.
We see that verifying two Hopper MACs per packet results in a
median latency increase of 20 to 40 𝜇s, depending on the packet
size. The increase in latency overhead with increasing packet sizes
is a direct consequence of SHA256 hash that is calculated over the
packet payload. Verifying 10 MACs instead of 2, adds an additional
20 𝜇s to the median latency, regardless of the packet size. Further,
we observe only a minor effect of Hopper on latency jitter, measur-
ing an average standard deviation of 17, 17, 20, and 22 𝜇s for the
loopback, plain DPDK, 2 MACs, and 10 MACs settings, respectively.

7.4 Controller Implementation

We implemented a proof of concept Hopper controller that allows
an administrator to specify which flows are whitelisted using a pol-
icy file and dynamically distributes flow keys on request. We also
extended our Hopper implementations to automatically request
missing flow keys from the controller and performed a functional
evaluation of interoperability and the bootstrapping mechanism
described in Section 5.7. Because the speed of the initial key distri-
bution is not critical, we did not benchmark the controller.

8 RELATEDWORK

IoT gateways. A common method to secure IoT networks is by
deploying a specialized IoT firewall, often called a gateway. Past
proposals include DeadBolt [29], IoT Sentinel [35], IoTSec [55], and
a design by Simpson et al. [46]. Concretely, Simpson et al. explore
how to protect and isolate vulnerable devices and how to securely
apply patches; IoT Sentinel and IoTSec focus on automated iden-
tification of compromised devices; and DeadBolt aims to enforce
the application of good security practices on IoT devices while
mediating traffic to non-complying devices.

These proposals all consist of a security proxy that all network
traffic must be routed through. While IoTSec envisions security
proxies to be instantiated at various points in the network with
overlay routing forcing traffic through them, the others effectively
require a physical or overlay network with a star topology.

Apple recently started including a basic version of an IoT firewall
in theirHomeKit platform [6]. The vendors of HomeKit devicesmust
supply a manifest file stating which connections their product is
supposed to establish, and by default all other communication flows
are blocked. Closely related to this, RFC 8520 [33] standardizes the

description of the expected network behavior of devices, facilitating
deny-by-default policies such as the one implemented by HomeKit.

While suitable in some environments, approaches as discussed
above are not suitable for industrial networks. That is, indirect rout-
ing introduces a single point of failure to the data plane, increased
latencies, and increased network overhead. Moreover, aggregating
and forcing network traffic along an indirect path directly counter-
acts the properties achieved by TSN. The proposals listed above also
do not achieve the source-authentication properties of Hopper.

Capability-based and Deny-by-Default networking. Hopper de-
ploys capability-based networking in order to achieve per-device
nano segmentation.While ourwork is (to the best of our knowledge)
the first to apply this concept to the IoT setting, capability-based
networking, and more generally, deny-by-default networking, have
been considered in other settings.

Concretely, a first set of past work considers the use of capa-
bilities for DoS protection on the Internet. Proposals in this space
include a design by Anderson et al. [4], SIFF [53], and TVA [54]. As
these proposals are designed to provide DoS protection, they only
prevent volumetric attacks, but still allow low volume traffic flows
to reach hosts. Hence, they do not prevent lateral movement.

Around the same time, Ballani et al. [7] proposed to propagate
whitelists through the Internet using a mechanism similar to BGP,
dropping all non-whitelisted traffic.While this scheme does prevent
all unwanted traffic from reaching an end host, it still assumes an
inter-domain setting, which is inapplicable to IoT networks. For
example, it requires large amounts of reachability information to
be transferred between forwarding elements.

A third set of work considers enterprise networks, most notably
SANE [14] and Ethane [13]. SANE uses capabilities in the form
of authenticated source routes, which are checked at each switch.
However, because routes in (wireless) IoT networks can be non-
predictable (see Section 2.3), it is not a suitable mechanism for IoT
settings. Ethane uses a complementary approach: each switch stores
a whitelist of permitted traffic. High control overhead and strong
assumptions on the network architecture render this mechanism
impractical in (constrained) IoT settings. Further, neither SANE nor
Ethane provide packet authentication.

Fieldbus authentication. There are a number of proposals that add
authentication to industrial fieldbusses [15, 40, 50, 51]. However,
these proposals do not provide least privilege (G1) or isolation (G2)
and requires device to be pre-provisioned with per-flow keys.

9 CONCLUSION

New trends in industrial automation are challenging the ways in
which industrial networks are secured. In order to address these
challenges, this work presentsHopper, a nano segmentation scheme
for industrial IoT deployments. By deploying capability-based and
deny-by-default networking, Hopper extends the protections typi-
cally only provided at the edge of the network to the entire network
fabric, realizing per-device network segmentation. Moreover, Hop-
per was designed to be compatible with the diverse constraints
encountered in IoT deployments, allowing the same protocol to be
deployed across a wide range of settings.
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Contrary to the ossification seen in traditional networks, the
IoT networking stack is still in flux. This represents a unique, but
ephemeral, opportunity to embed security-by-design into the core
of the IoT stack.Hopper accomplishes this by extending the broadly
accepted principle of least privilege across the network. Moreover,
as the IoT’s momentum is ever increasing, the need for the strong
but flexible defenses thatHopper provides has never been so critical.
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A RESULTS FOR HOPPER ON ETHERNET

Figures 11 and 12 show the results for our Ethernet Hopper imple-
mentation. They are functionally equivalent to Figures 5 and 6.
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Figure 12: Simplified load profile for Hopper on Ethernet

using 10 MACs per tag.
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