Secure Hierarchical In-Network Aggregation
In Sensor Networks -

Haowen Chan
Carnegie Mellon University

haowenchan@cmu.edu

ABSTRACT

In-network aggregation is an essential primitive for performing

Adrian Perrig
Carnegie Mellon University

perrig@cmu.edu

Dawn Song
Carnegie Mellon University

dawnsong@cmu.edu

Keywords
Secure aggregation, Sensor Networks, Data aggregation

gueries on sensor network data. However, most aggregation algo-

rithms assume that all intermediate nodes are trusted. In contrast,q]
the standard threat model in sensor network security assumes that

an attacker may control a fraction of the nodes, which may misbe-
have in an arbitrary (Byzantine) manner.
We present the first algorithm for provably secure hierarchical

in-network data aggregation. Our algorithm is guaranteed to detect
any manipulation of the aggregate by the adversary beyond what is

achievable through direct injection of data values at compromised

nodes. In other words, the adversary can never gain any advan-

tage from misrepresenting intermediate aggregation computations
Our algorithm incurs onI)D(Alog2 n) node congestion, supports

arbitrary tree-based aggregator topologies and retains its resistanc

against aggregation manipulation in the presence of arbitrary num-
bers of malicious nodes. The main algorithm is based on perform-
ing the sum aggregation securely by first forcing the adversary to
commit to its choice of intermediate aggregation results, and then
having the sensor nodes independently verify that their contribu-
tions to the aggregate are correctly incorporated. We show how to
reduce SecurRiEDIAN, COUNT, andAVERAGE to this primitive.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-
rity and Protection

General Terms
Security, Algorithms
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INTRODUCTION

Wireless sensor networks are increasingly deployed in security-
critical applications such as factory monitoring, environmental mon-
itoring, burglar alarms and fire alarms. The sensor nodes for these
applications are typically deployed in unsecured locations and are
not made tamper-proof due to cost considerations. Hence, anradver
sary could undetectably take control of one or more sensor nodes
and launch active attacks to subvert correct network operations.
Such environments pose a particularly challenging set of constraints
for the protocol designer: sensor network protocols must be highly

gnergy efficient while being able to function securely in the pres-

ence of possible malicious nodes within the network.

In this paper we focus on the particular problem of securely and
efficiently performing aggregate queries (suchvaDIAN, SUM
andAVERAGE) on sensor networks. In-network data aggregation is
an efficient primitive for reducing the total message complexity of
aggregate sensor queries. For example, in-network aggregation of
the suM function is performed by having each intermediate node
forward a single message containing the sum of the sensor readings
of all the nodes downstream from it, rather than forwarding each
downstream message one-by-one to the base station. The energy
savings of performing in-network aggregation have been shown to
be significant and are crucial for energy-constrained sensor net-
works [9, 11, 20].

Unfortunately, most in-network aggregation schemes assume that
all sensor nodes are trusted [12,20]. An adversary controlling just
a few aggregator nodes could potentially cause the sensor network
to return arbitrary results, thus completely subverting the function
of the network to the adversary’s own purposes.

Despite the importance of the problem and a significant amount
of work on the area, the known approaches to secure aggregation
either require strong assumptions about network topology or ad-
ersary capabilities, or are only able to provide limited probabilis-
tic security properties. For example, Hu and Evans [8] propose
a secure aggregation scheme under the assumption that at most a
single node is malicious. Przydatek et al. [17] propose Secure In-
formation Aggregation (SIA), which provides a statistical security
property under the assumption of a single-aggregator model. In the
single-aggregator model, sensor nodes send their data to a single
aggregator node, which computes the aggregate and sends it to the
base station. This form of aggregation reduces communications
only on the link between the aggregator and the base station, and is
not scalable to large multihop sensor deployments. Most of the al-
gorithms in SIA (in particularMEDIAN, SUM andAVERAGE) can-
not be directly adapted to a hierarchical aggregation model since



they involve sorting all of the input values; the final aggregatorin 3.1 Network Assumptions
the hierarchy thus needs to access all the data values of the sensor \we assume a general multihop network with aet{s; ..., sn}

nodes.l , of n sensor nodes and a single (untrusted) base stRfiamich is

In this paper, we present the first provably secure sensor networkapje to communicate with the querier which resides outside of the
data aggregation protocol for general networks and multiple adver- network. The querier knows the total number of sensor noges
sarial nodes. The algorithm limits the adversary’s ability to ma- and that alh nodes are alive and reachable.
nipulate the aggregation result with the tightest bound possible for We assume the aggregation is performed oveaggregation
general algorithms with no knowledge of the distribution of sen- reewnhich is the directed tree formed by the union of all the paths
sor data values. Specifically, an adversary can gain no additionalfrom the sensor nodes to the base station (one such tree is shown
influence over the final result by manipulating the results of the in Figure 1(a)). These paths may be arbitrarily chosen and are not
in-network aggregate computation as opposed to simply reporting necessarily shortest paths. The optimisation of the aggregation tree
false data readings for the compromised nodes under its control. strycture is out of the scope of this paper—our algorithm takes the
Furthermore, unlike prior schemes, our algorithm is designed for strycture of the aggregation tree as given. One method for con-

general hierarchical aggregator topologies and multiple malicious sirycting an aggregation tree is described in TaG [11]
sensor nodes. Our metric for communication costdagestion

which is the maximum communication load on any node in the 3.2 Security Infrastructure

network. Letn be the number of nodes in the network, ahthe We assume that each sensor node has a unique idestifiet

the maximum degree of any node in the aggregation tree. Our algo-shares a unique secret symmetric keywith the querier. We fur-
rithm induces onlyO(Alog? n) node congestion in the aggregation  ther assume the existence of a broadcast authentication primitive

tree. where any node can authenticate a message from the querier. This
broadcast authentication could, for example, be performed using
2. RELATED WORK MTESLA [16]. We assume the sensor nodes have the ability to per-

orm symmetric-key encryption and decryption as well as compu-

. . - . . fi
Researchers have investigated resilient aggregation algorithms % 1tions of a collision-resistant cryptographic hash funckion

provide increased likelihood of accurate results in environments
prone to message loss or node failures. This class of algorithms3.3  Attacker Model

includes work by Gupta et al. [7], Nath et al. [15], Chen etal. [8]  \yg assume that the attacker is in complete control @fhitrary
and Manjhi et al. [14]. numberof sensor nodes, including knowledge of all their secret

A number of aggregation algorithms have been proposed 10 en-yeys The attacker has a network-wide presence and can record and
suresecrecyof the data against intermediate aggregators. Such al- jniect messages at will. The sole goal of the attacker is to launch

gorithms have been proposed by Girao et al. [5], Castelluccia et 4t Przydatek et al. [17] call stealthy attacki.e., to cause the

al. [2], and Cam et al. [1]. o _ . querier to accept a false aggregate that is higher or lower than the
Hu and Evans [8] propose securing in-network aggregation agains,e aggregate value.

a single Byzantine adversary by requiring aggregator nodes to for- - \ye do not consider denial-of-service (DoS) attacks where the
ward thelrln_puts to their parent nodes in the aggregation tree. Jadlagoa| of the adversary is to prevent the querier from getting any
and Mathuria [10] extend the Hu and Evans approach by incorpo- qqregation result at all. While such attacks can disrupt the nor-
rating privacy, but also cons_ldered or_llyasmgle malicious node. 5| operation of the sensor network, they are not as potentially

Several secure aggregation algorithms have been proposed fof,524rdous in security-critical applications as the ability to cause
the single-aggregator model. Przydatek et al. [17] proposed Se-ihq gperator of the network to accept arbitrary data. Furthermore,
cure Information Aggregation (SIA) for this topology. Also forthe 4y majiciously induced extended loss of service is a detectable

single-aggregator case, Du et al. [4] propose using multipte anomaly which will (eventually) expose the adversary’s presence
nessnodes as additional aggregators to verify the integrity of the it 5 psequent protocols or manual intervention do not succeed in
aggregator’s result. Mahimkar and Rappaport [13] also propose resolving the problem.

an aggregation-verification scheme for the single-aggregator model o )
using a threshold signature scheme to ensure that attledshe 3.4 Problem Definition and Metrics

nodes agree with the aggregation result. Yang et al. [19] describe Egch sensor nods has a data valug;. We assume that the
a probabilistic aggregation algorithm which subdivides an aggre- data value is mon-negativébounded real valug; € [0, r] for some
gation tree into subtrees, each of which reports their aggregatesmaximum allowed data value The objective of the aggregation
directly to the base station. Outliers among the subtrees are the”process is to compute some functidénover all the data values,
probed for inconsistencies. i.e., f(a1,...,an). Note that for thesum aggregate, the case where
Wagner [18] addressed the issue of measuring and bounding ma-ata values are in a range, 1] (wherery,r, can be negative)
licious nodes’ contribution to the final aggregation result. The pa- s reducible to this case by setting=r, —ry and addnr; to the
per measures how much damage an attacker can inflict by takingaggregation result.
control of a number of nodes and using them solely to inject erro-

neous data values. Definition 1 Adirect datainjection attack occurs when an attacker
modifies the data readings reported by the nodes under its direct
3. PROBLEM MODEL control, under the constraint that only legal readings[®r] are
) reported.
In general, the goal of secure aggregation is to compute aggre- P
gate functions (such asum, COUNT or AVERAGE) of the sensed Wagner [18] performed a quantitative study measuring the ef-

data values residing on sensor nodes, while assuming that a porfect of direct data injection on various aggregates, and concludes
tion of the sensor nodes are controlled by an adversary which is that the aggregates addressed in this paper (truncateacndAv-
attempting to skew the final result. In this section, we present the ERAGE, COUNT and®-QUANTILE) can be resilient under such at-
formal parameters of the problem. tacks.



Without domain knowledge about what constitutes an anoma- their respective contributions have been added to the aggregate. If
lous sensor reading, it is impossible to detect a direct data injection the adversary attempts to discard or reduce the contribution of a
attack, since they are indistinguishable from legitimate sensor read-legitimate sensor node, this necessarily induces an inconsistency
ings [17,19]. Hence, if a secure aggregation scheme does not makeén the commitment structure which can be detected by the affected
assumptions on the distribution of data values, it cannot limit the node. This basic approach provides us with a lower bound for the
adversary’s capability to perform direct data injection. We can thus sum aggregate. To provide an upper-bound $amv, we can re-
define an optimal level of aggregation security as follows. use the same lower-bounding approach, but on a complementary
aggregate called theoMPLEMENT aggregate. Whersum is de-
fined asy a, COMPLEMENT s defined a$ (r — a;) wherer is the
upper bound on allowable data values. When the final aggregates
are computed, the querier enforces the constrainsthst+ com-
PLEMENT = nr. Hence any adversary that wishes to incresise
must also decreaseOMPLEMENT, and vice-versa, otherwise the

As a metric for communication overhead, we consider rume discrepancy will be detected. Hence, by enforcing a lower-bound
gestion which is the worst case communication load on any sin- on COMPLEMENT, we are also enforcing an upper-boundsanv.
gle sensor node during the algorithm. Congestion is a commonly  The overall algorithm has three main phases: query dissemina-
used metric in ad-hoc networks since it measures how quickly the tion, aggregation-commit, and result-checking.
heaviest-loaded nodes will exhaust their batteries [6,12]. Since the Query dissemination. The base station broadcasts the query to
heaviest-loaded nodes are typically the nodes which are most esthe network. Anaggregation tregor a directed spanning tree over
sential to the connectivity of the network (e.g., the nodes closest to the network topology with the base station at the root, is formed as
the base station), their failure may cause the network to partition the query is sent to all the nodes, if one is not already present in the

Definition 2 An aggregation algorithm isptimally secure if, by
tampering with the aggregation process, an adversary is unable to
induce the querier to accept any aggregation result which is not
already achievable by direct data injection.

even though other sensor nodes in the network may still have high network.

battery levels. A lower communication load on the heaviest-loaded

Aggregation commit. In this phase, the sensor nodes iteratively

nodes is thus desirable even if the trade-off is a larger amount of construct a commitment structure resembling a hash tree. First, the

communication in the network as a whole.

leaf nodes in the aggregation tree send their data values to their par-

For a lower bound on congestion, consider an unsecured aggre-ents in the aggregation tree. Each internal sensor node in the ag-
gation protocol where each node sends just a single message t@regation tree performs an aggregation operation whenever it has

its parent in the aggregation tree. This is the minimum number

heard from all its child sensor nodes. Whenever a sensor siode

of messages that ensures that each sensor node contributes to theerforms an aggregation operati@greates a commitment to the

aggregation result. There (1) congestion on each edge on the
aggregation tree, thus resulting@{d) congestion on the node(s)
with highest degred in the aggregation tree. The paramedds

set of inputs used to compute the aggregate by computing a hash
over all the inputs (including the commitments that were computed
by the children of). Both the aggregation result and the commit-

dependent on the shape of the given aggregation tree and can be asent are then passed on to the parers dfter the final commit-

large asd(n) for a single-aggregator topology or as small4)

ment values are reported to the base station (and thus also to the

for a balanced aggregation tree. Since we are taking the aggregagquerier), the adversary cannot subsequently claim a different ag-

tion tree topology as an input, we have no control aveHence,

it is often more informative to consider per-edge congestion, which

can be independent of the structure of the aggregation tree.
Consider the simplest solution where we omit aggregation al-

gregation structure or result. We describe an optimisation to ensure

that the constructed commitment trees are perfectly balanced, thus

requiring low congestion overhead in the next phase.
Result-checking.The result-checking phase is a novel distributed

together and simply send all data values (encrypted and authenti-verification process. In prior work, algorithms have relied on the

cated) directly to the base station, which then forwards it to the
querier. This provides perfect data integrity, but indudés) con-

querier to issue probes into the commitment structure to verify its
integrity [17,19]. This induces congestion nearest the base station,

gestion at the nodes and edges nearest the base station. For an algand moreover, such algorithms yield at best probabilistic security

rithm to be practical, it must cause only sublinear edge congestion.

Our goal is to design aoptimally secureaggregation algorithm
with only sublinear edge congestion

4, THE SUM ALGORITHM

In this section we describe our algorithm for them aggregate,
where the aggregation functidnis addition. Specifically, we wish
to computea; + - - - + an, Whereg; is the data value at node We

defer analysis of the algorithm properties to Section 5, and discuss

the application of the algorithm to other aggregates suctoas\T,
AVERAGE andMEDIAN in Section 6.

We build on the aggregate-commit-prove framework described
by Przydatek et al. [17] but extend their single aggregator model
to a fully distributed setting. Our algorithm involves computing a
cryptographic commitment structure (similar to a hash tree) over

the data values of the sensor nodes as well as the aggregation pro-
cess. This forces the adversary to choose a fixed aggregation topol
ogy and set of aggregation results. The individual sensor nodes

then independently audit the commitment structure to verify that

properties. We show that if the verification step is instead fully dis-
tributed, it is possible to achieve provaldptimal security while
maintaining sublinear edge congestion.

The result-checking phase proceeds as follows. Once the querier
has received the final commitment values, it disseminates them to
the rest of the network in an authenticated broadcast. At the same
time, sensor nodes disseminate information that will allow their
peers to verify that their respective data values have been incor-
porated into the aggregate. Each sensor node is responsible for
checking that its own contribution was added into the aggregate.
If a sensor node determines that its data value was indeed added
towards the final sum, it sends an authentication code up the aggre-
gation tree towards to the base station. Authentication codes are ag-
gregated along the way with the XOR function for communication
efficiency. When the querier has received the XOR of all the au-
thentication codes, it can then verify that all the sensor nodes have
confirmed that the aggregation structure is consistent with their data

values. If so, then it accepts the aggregation result.
We now describe the details of each of the three phases in turn.
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(@) Example network graph. (b) Naive commitment tree, showing derivations of some of the vertlemseach sensor

Arrows: Aggregation tree. nodeX, X is its leaf vertex, whileX; is the internal vertex representing the aggregate

R: Base station. Q: Querier. ~ computation aX (if any). On the right we list the labels of the vertices on the path of
node G to the root.

Figure 1: Aggregation and naive commitment tree in network contet

4.1 Query Dissemination Definition 3 A commitment tree is a tree where each vertex has

First, an aggregation tree is established if one is not already @n associated label representing _the data that is passed on to its
present. Various algorithms for selecting the structure of an ag- Parent. The labels have the following format:
gregation tree may be used. For completeness, we describe one
such process, while noting that our algorithm is directly applicable
to any aggregation tree structure. The Tiny Aggregation Service Wherecount is the number of leaf vertices in the subtree rooted
(TaG) [11] uses a broadcast from the base station where each nodeit this vertex;val ue is the sum aggregate computed over all
chooses as its parent in the aggregation tree, the node from whichthe leaves in the subtreepnpl erment is the aggregate over the
it first heard the tree-formation message. COMPLEMENT of the data values; andonmi t nent is a crypto-

To initiate a query in the aggregation tree, the base station orig- graphic commitment. The labels are defined inductively as follows:
inates a query request message which is distributed following the  There is one leaf vertexsifor each sensor node s, which we
aggregation tree. The query request message contains an attacheghll the leaf vertex of s. The label of g consists ofcount =1,
nonceN to prevent replay of messages belonging to a prior query, val ue=as where a is the data value of ;onpl enent =r — ag
and the entire request message is sent using an authenticated broagvhere r is the upper bound on allowable data values, and
cast. commi t ment is the node’s unique ID.

Internal vertices represent aggregation operations, and have la-
bels that are defined based on their children. Suppose an internal

4.2 Aggregation-Commit Phase vertex has child vertices with the following labelsi, w, ..., ug,

) ) . ) ) where y = (¢, Vi, Vi, hj). Then the vertex has labé&t, v, v, h), with
The goal_of the aggregatlon-comml_t phase is to iteratively con- C=5G, V=3V, V=5V and h=H[N|[c|[v[¥l|u|[uz]|- - - ||ug]-

struct a series of cryptographic commitments to data values and to

intermediate in-network aggregation operations. This commitment ko previty, in the remainder of the paper we will often omit ref-

is then passed on to the querier. The querier then rebroadcasts th@rences to labels and instead refer directly todbent , val ue,

commitment to the sensor network using an authenticated broad-¢opp| emrent or cormi t ment of a vertex.

cast so that the rest of the sensor network is able to verify that their  \yhjle there exists a natural mapping between vertices in a com-

respective data values have been incorporated into the aggregate. mitment tree and sensor nodes in the aggregation tree, a vertex is
a logical element in a graph while a sensor node is a physical de-
vice. To prevent confusion, we will always refer to therticesin

4.2.1 Aggregation-Commit: Naive Approach the commitment tree; the termodesalways refers to the physical

We first describe a naive approach that yields the desired secu-seg.sor node device. h hash f . id llisi .
rity properties but has suboptimal congestion overhead when sensort |nc1_et\{ve assumtett_ at Ic|>ur_ fas _Sjlncftlon pr0\é| es co |tS|onhreS|s-
nodes perform their respective verifications. In the naive approach ance, 1t 1s computationally inteasible for an adversary 1o change
when each sensor node performs an aggregation operation, it com@V of the contents of the commitment tree once the final commit-
putes a cryptographic hash of all its inputs (including its own data men_t values have reached the root. .
value). The hash value is then passed on to the parent in the aggre- V.v'th knowledge .Of the root commitment value, a nadlmay
gation tree along with the aggregation result. Figure 1(b) shows avern‘y the aggregatlon steps between its leaf vedgand the_ root
commitment treavhich consists of a series of hashes of data values of the commitment tree. To do seneeds the labels of all itsff-
and intermediate results, culminating in a set of final commitment pathvertices.
values which is passed on by the base station to the querier along
with the aggregation results. Conceptually, a commitment tree is Definition 4 The set obff-path vertices for a vertex u in a tree is
a hash tree with some additional aggregate accounting informationthe set of all the siblings of each of the vertices on the path from u
attached to the nodes. A definition follows. Recall thais the to the root of the tree that u is in (the path is inclusive of u).
guery nonce that is disseminated with each query.

(count, value, conplenent, conmitnent)



Q the delayed aggregation algorithm, each sensor node now passes
on the labels of the root vertices ofsatof commitment subtrees
F ={Ty,...,Tq}. We call this set ommitment forestand we
enforce the condition that the trees in the forest must be complete
binary trees, and no two trees have the same height. These con-
straints are enforced by continually combining equal-height trees
into complete binary trees of greater height.

Figure 2: Off-path vertices for u are highlighted in bold. The Definition 5 A commitment forest is a set of complete binary com-
path from uto the root of its tree is shaded grey. mitment trees such that there is at most one commitment tree of any
given height.

Figure 2 shows a pictorial depiction of the off-path vertices fora A commitment forest has at mostleaf vertices (one for each
vertexu in a tree. For a more concrete example, the set of off-path sensor node included in the forest, up to a maximum)ofSince
commitment tree vertices fdBg in Figure 1 is{Fp, Eg, Cp, B1, all the trees are complete binary trees, the tallest tree in any com-
Ao, Do, Ho, lo}. To allow sensor nod6& to verify its contribution mitment forest has height at most legSince there are no two trees
to the aggregate, the sensor network delivers labels of each off- of the same height, any commitment forest has at most toggs.
path vertex taGg. Sensor nod& then recomputes the sequence of In the following discussion, we will for brevity make reference
computations and hashes and verifies that they lead to the correcto “communicating a vertex” to another sensor node, or “commu-
root commitment value. nicating a commitment forest” to another sensor node. The actual

Consider the congestion on the naive schemehlbetthe height data communicated is tHabel of the vertex and thé&abels of the
of the aggregation tree abe the maximum degree of any node rootsof the trees in the commitment forest, respectively.
inside the tree. Each leaf vertex HaghA) off-path vertices, and it The commitment forest is built as follows. Leaf sensor nodes in
needs to receive all their labels to verify its contribution to the ag- the aggregation tree originate a single-vertex commitment forest,
gregate, thus leading ©(hA) congestion at the leaves of the com-  which they then communicate to their parent sensor nodes. Each
mitment tree. For an aggregation tree constructed with TaG, the internal sensor nods originates a similar single-vertex commit-
heighth of the aggregation tree depends on the diameter (in number ment forest. In additions also receives commitment forests from
of hops) of the network, which in turn depends on the node density each of its children. Sensor nodéeeps track of which root ver-
and total number of nodesin the network. In a 2-dimensional  tices were received from which of its children. It then combines all
deployment area with a constant node density, the best bound onthe forests to form a new forest as follows.

the diameter of the network ©(,/n) if the network is regularly Supposes wishes to combing commitment forest$, ..., F;.
shaped. In irregular topologies the diameter of the network may be Note that since all commitment trees are complete binary trees, tree
Q(n). heights can be determined by inspecting ¢twunt field of the

. . root vertex. We let the intermediate resultfbe- FLU---UFg, and
4.2.2  Aggregation-Commit: Improved Approach repeat the following until no two trees are the same heigH:in

We present an optimization to improve the congestion cost. The Let h be the smallest height such that more than one tréefias
main observation is that, since the aggregation trees are a sub-heighth. Find two commitment tree$; and T, of heighth in F,
graph of the network topology, they may be arbitrarily unbalanced. and merge them into a tree of heidght 1 by creating a new vertex
Hence, if we decouple the structure of the commitment tree from that is the parent of both the roots ©f and T, according to the
the structure of the aggregation tree, then the commitment treeinductive rule in Definition 3. Figure 3 shows an example of the
could be perfectly balanced. process for nodé based on the topology in Figure 1.

In the naive commitment tree, each sensor node always com- The algorithm terminates i®(glogn) steps since each step re-
putes the aggregate sum af its inputs. This can be considered duces the number of trees in the forest by one, and there are at most
a strategy ofgreedy aggregatian Consider instead the benefit of glogn+ 1 trees in the forest. Hence, each sensor node creates at
delayed aggregatiomt nodeC; in Figure 1(b). Suppose th&t, mostglogn+ 1 = O(Alogn) vertices in the commitment forest.
instead of greedily computing the aggregate sum over its own read- WhenF is a valid commitment foresg,sends the root vertices of
ing (Co) and both its child nodeBy andF,, instead computes the  each tree irF to its parent sensor node in the aggregation tree. The
sumonly over Cy and Eg, and passeB; directly to A along with sensor nodealso keeps track of every vertex that it created, as well
C1 = Cp+ Eg. In such a commitment tre&; becomes a child of as all the inputs that it received (i.e., the labels of the root vertices
A; (instead ofC,), thus reducing the depth of the commitment tree  of the commitment forests that were senstuy its children). This
by 1. Delayed aggregation thus trades off increased communica-takesO(dlogn) memory per sensor node.
tion during the aggregation phase in return for a more balanced Consider the communication costs of the entire process of creat-
commitment tree, which results in lower verification overhead in ing the final commitment forest. Since there are at mosh logm-
the result-checking phase. Greenwald and Khanna [6] used a formmitment trees in each of the forests presented by any sensor node to
of delayed aggregation in their quantile summary algorithm. its parent, the per-node communication cost for constructing the fi-

Our strategy for delayed aggregation is as follows: we perform nal forestisO(logn). This is greater than th®(1) congestion cost
an aggregation operation (along with the associated commit oper-of constructing the naive commitment tree. However, no path in the
ation) if and only if it results in a&omplete, binarycommitment forest is longer than log hops. This will eventually enable us to
tree. prove a bound oQ‘D(Iog2 n) edge congestion for the result-checking

We now describe our delayed aggregation algorithm for produc- phase in Section 5.2.
ing balanced commitment trees. In the naive commitment tree, Once the querier has received the final commitment forest from
each sensor node passes to its parent a single message contaithe base station, it checks that none of #ua1 or COMPLEMENT
ing the label of the root vertex of its commitment subtiige In aggregates of the roots of the trees in the forest are negative. If
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(a) Inputs: A generateg\y, and receive®g from D, C, from C, and(B1,Kp) from B. Each dashed-line box shows the commitment
forest received from a given sensor node. The solid-line box sioe/vertex labels, each solid-line box below shows the labels of the
new vertices.

Vo, =aa+ap
Up, =F—aa+r—ap
A1 = (2,Va;,Va,, HINJ2[ |V, |[Va, [ Aol Dol)

(b) First merge: VerteXd; created

VA, = Va, + VB,
Va, = Va, +VB,

Az = (4,Va;,Vny, H N|[4]|Va, | [Va, || [B1])

(c) Second merge: Vertex, created

Vas = Va, + VG,
Vas = Va, +Vc,

Ag = (8, Vg, Vg, H [N[8]|Va, [ Vas | |A2]C2])

®

(d) Final merge: VerteX\3 created Az andKg are sent to the parent éfin the aggregation tree.

Figure 3: Process of nodeA (from Figure 1) deriving its commitment forest from the commitment forests received from its children.

any aggregates are negative, the querier rejects the result and raisesggregate value must have increaseddgue to the incorporation

an alarm: a negative aggregate is a sure sign of tampering sinceof the data value. If each legitimate node performs this verification,
all the data values (and their complements) are non-negative. Oth-then it ensures that tr&um aggregate is at least the sum of all the
erwise, the querier then computes the final pair of aggregates data values of the legitimate nodes. Similarly, t@MPLEMENT
andCOMPLEMENT. The querier verifies th&um + COMPLEMENT aggregate is at least the sum of all the complements of the data
= nr wherer is the upper bound on the range of allowable data val- values of the legitimate nodes. Since the querier enfoscas +

ues on each node. If this verifies correctly, the querier then initiates COMPLEMENT = nr, these two inequalities form lower and upper

theresult-checkinghase. bounds on an adversary’s ability to manipulate the final result. In
Section 5 we shall show that they are in fact the tightest bounds
4.3 Result-checking phase possible.

The purpose of the result-checking phase is to enable each sensor A high. level overview of the process Is as f(.)IIOWS' First, the
nodesto independently verify that its data valagwas added into aggregation results from the aggregation-commit phase are sent us-

the Sum aggregate, and the complemént- as) of its data value ing authenticated broadcast to every sensor node in the network.
was added into th(;;OMPLEMENT aggregate. The verification is Each sensor node then individually verifies that its contributions

performed by inspecting the inputs and aggregation operations int0 the respectivéum and COMPLEMENT aggregates were indeed

the commitment forest on the path from the leaf vertes tif the counted. If so, it sends an authentication code to the base station.
root of its tree; if all the operations are consistent, then the root The authentication code is also aggregated for communication effi-



Collection of confirmations. After each sensor nodehas suc-
cessfully performed the verification step for its leaf vertgxit
sends an authentication code to the querier. The authentication code

”% \?’1 for sensor nodsis MACk (N||OK) where OK is a unique message
identifier andKs is the key thas shares with the querier. The col-
lation of the authentication codes proceeds as follows (note that we

/\ / \ are referring to thaggregationtr_ee at this poin;, not the_ commit- _
U, U ment tree). Leaf sensor nodes in the aggregation tree first send their
authentication codes to their parents in the aggregation tree. Once

an internal sensor node has received authentication codes from all

Figure 4: Dissemination of off-path values:t sends the label of its children, it computes the XOR of its own authentication code
uy to U, and vice-versa; each node then forwards it to all the with all the received codes, and forwards it to its parent. At the end
vertices in their subtrees. of the process, the querier will receive a single authentication code

from the base station that consists of the XOR of all the authenti-
cation codes received in the network.

Verification of confirmations. Since the querier knows the key
'Ks for each sensor nodg it verifies that every sensor node has
released its authentication code by computing the XOR of the au-
thentication codes for all the sensor nodes in the network, i.e.,
MACKk, (N||OK) & --- & MACk, (N||OK). The querier then com-
pares the computed code with the received code. If the two codes
match, then the querier accepts the aggregation result. Otherwise,
the querier rejects the result. A rejection may indicate the presence
of the adversary in some unknown nodes in the network, or it may
be due to natural factors such as node death or message loss. The
querier may either retry the query or attempt to determine the cause
of the rejection. For example, it could directly request the leaf val-

ciency. When the querier has received all the authentication codes
it is then able to verify that all sensor nodes have checked that their
contribution to the aggregate has been correctly counted.

For simplicity, we describe each step of the process with refer-
ence to the commitment tree visualised a®aerlay networlover
the actual aggregation tree. Hence, we will refevedticesin the
commitment tree sending information to each other; in the physical
world, it is the sensor node that created the vertex is the physical
entity that is responsible for performing communications and com-
putations on behalf of the vertex. Each edge in the commitment
tree may involve multiple hops in the aggregation tree; the routing

on the aggregation tree is straightforward. ues of every sensor node: if rejections due to natural causes are

Dissemination of final commitment values.After the querier - - oo S ;
. - . sufficiently rare, the high cost of this direct query is incurred infre-
has received the labels of the roots of the final commitment forest, : .
guently and can be amortised over the other successful queries.

the querier sends each of these labels to the entire sensor network
using authenticated broadcast.
Dissemination of off-path values.To enable verification, each 5. ANALYSIS OF SUM
leaf vertex must receive all its off-path values. Each internal vertex In this section we prove the properties of them algorithm. In
t in the commitment forest has two childrepandu,. To dissemi- Section 5.1 we prove the security properties of the algorithm, and

nate off-path values,sends the label af; to uz, and vice-versat( in Section 5.2 we prove bounds on the congestion of the algorithm.
also attaches relevant information taggingas the right child and

U, as the left child). Vertex also sends any labels (and leftright 5.1 Security Properties

tags) received from its parent to both its children. See Figure 4for  \we assume that the adversary is able to freely chaosear-

an illustration of the process. The correctness of this algorithm in pitrary topology and set of labels for the final commitment forest.

delivering all the necessary off-path vertex labels to each vertex is we then show that any such forest which passes all the verification

the labels of its off-path vertices, it can proceed to the verification actual result. First, we define the notion of @eonsistencyor

step. evidence of tampering, at a given node in the commitment forest.
Verification of inclusion. When the leaf vertexis of a sensor

nodes has received all the labels of its off-path vertices, it may Definition 6 Let t —

then verify that no aggregation result-tampering has occurred on o

the path betweens and the root of its commitment tree. For each

vertext on the path fromus to the root of its commitment treeig

derives the label of (via the computations in Definition 3). It is

able to do so since the off-path labels provide all the necessary dat

to perform the label computation. During the computatianin-

spects the off-path Iabel_s: for each ncb(m_ the path fromus ‘9 the att, or if any of the inputs td are negative. Intuitively, if there
root, us checks that the input values fed into the aggregation oper- are no inconsistencies on a path from a vertex to the root of the

a_tlon ?;t a(;etnevecrj negatllve. N(tegatlwe values should tr)e\/.eL OCCUT commitment tree, then the aggregate value along the path should
since the data and complement values are non-negative; hence it o0 decreasing towards the root.

a negative input is encountered, the verification fails. Qrdeas
derived the label of the root of its commitment tree, it compares

(¢, v, V, He) be an internal vertex in a com-
mitment forest. Let its two children bg & (c1,v1,V1,Hp) and
up = (Cp, V2,2, Hp). There is arinconsistency at vertex t in a com-
mitment tree if either (1)t v1 + Vo O W # V1 + Vo Or (2) any of
a{vl,vz,vl,vz} is negative.

Informally, an inconsistency occurstaf the sums don't add up

the derived label against the label with the saxoeint that was Definition 7 Call a leaf-vertex uaccounted-for if there is no in-
disseminated by the querier. If the labels are identical, themo- consnst_ency at any vertex on the |_oath from the leaf-vertex u to the
ceeds to the next step. Otherwise, the verification failstanday root of its commitment tree, including at the root vertex.

either immediately raise an alarm (for example, using broadcast),

or it may simply do nothing and allow the aggregate algorithm to Lemma 8 Suppose there is a set of accounted-for leaf-vertices with
fail due to the absence of its confirmation message in the subse-distinct labels w,...,un and committed data valueg,v..,vy in
quent steps.



the commitment forest. Then the total of the aggregation values at PROOF To compute the correct final XOR check value, the ad-
the roots of the commitment trees in the forest is at I§&&} vi. versary needs to know the XOR of all the legitimate sensor nodes
. o ) . that did not release their MAC. Since we assume that each of the

Lemma 8 can be rigorously proven using induction on the height yjstinct MACs are unforgeable (and not correlated with each other),
of the subtrees in the forest (see Appendix A). Here we present &g aqversary has no information about this XOR value. Hence, the
more Intuitive argument. only way to produce the correct XOR check value is for all the

PrRoOF (Sketch) We show the result fon = 2; a similar rea- legitimate sensor nodes to have released their relevant MACS.
soning applies for arbitrargn. Case 1: Supposs andup are in
different trees. Then, since there is no inconsistency on any ver- Theorem 12 Let the finalsum aggregate received by the querier
tex on the path fronu; to the root of its tree, the root of the tree  be S. If the querier accepts S, thanSS< (S +ur) where $ is
containingu; must have an aggregation value of at leastBy a the sum of the data values of all the legitimate nodes, u is the total
similar reasoning, the root of the tree containipgmust have an  number of malicious nodes, and r is the upper bound on the range
aggregation value of at leagt. Hence the total aggregation value of allowable values on each node.
of the two trees containing; andus is at least/; + vs.

Case 2: Now supposg andu; are in the same tree. Since they
have distinct labels, they must be distinct vertices, and they must
have a lowest common ancestan the commitment tree. The ver-
tices between; andt (includingu;) must have aggregation value
at leastv; since there are no inconsistencies on the path fugm
tot, so the aggregation value could not have decreased. Similarly,
the vertices betweemp andt (includingu,) must have aggregation
value at least,. Hence, one of the children othas aggregation
value at least; and the other has aggregation value at least
Since there was no inconsistencyt atertext must have aggrega-
tion value at least; + v». Since there are no inconsistencies on the

ath fromt to the root of the commitment tree, the root also must — o= = .
b nodes. Furthermore, by Theorem®2> S , whereS_ is the sum

have aggregation value at leagtt v». -
Negative root aggregate values are detected by the querier at thz{f Ir:_ebcomplerrler}tls oft_the tdata values gf all tr&elelgjltl(r)nste nodes.
end of the aggregate-commit phase, so the total sum of the aggre- e e the set of legitimate sensor nodes, with=1. serve

. thatS = Jic r—a=Ir—S. =n—Wr—S =nr— (S +ur).
gate values of the roots of all the trees is thus at leastv,. [ We have thatS+S— nr andS> nr — (S +ur). Substituting,

PROOF Suppose the querier accepts thev resultS. Let the
COMPLEMENT SuUMreceived by the querier &8 The querier ac-
ceptsSif and only if it receives the correct final XOR check value
in the result-checking phase, aBd- S= nr. Since the querier re-
ceived the correct XOR check value, we know that each legitimate
sensor node must have released its confirmation MAC (Lemma 11),
and so the leaf vertices of each legitimate sensor node must be
accounted-for (Lemma 10). The set of labels of the leaf vertices of
the legitimate nodes is distinct since the labels contain the (unique)
node ID of each legitimate node. Since all the leaf vertices of the le-
gitimate sensor nodes are distinct and accounted-for, by Theorem 8,
S> S where§ is the sum of the data values of all the legitimate

The following is a restatement of Lemma 8 for tbemMPLE- S=nr—S<§ +ur. Hence§. <S< (S +ur). O
MENTARY SUM aggregate; its proof follows an identical structure ) o
and is thus omitted. Note that nowhere was it assumed that the malicious nodes were

constrained to reporting data values betwfn|: in fact it is pos-
Lemma 9 Suppose there is a set of accounted-for leaf vertices sible to have malicious nodes with data values alrosebelow 0
with distinct labels y, ..., umn with committed complement values ~ Without risking detection i < S< (§ +r).
V1,...,Vm in the commitment forest. Then the totaMPLEMENT
aggregation value of the roots of the commitment trees in the forest Theorem 13 Thesuwm algorithm is optimally secure.

H m
is at leasty T, Vi. PROOF. Letthe sum of the data values of all the legitimate nodes

- ) . ~ beS.. Consider an adversary withmalicious nodes which only
Lemma 10 A legitimate sensor node will only release its confir- o forms direct data injection attacks. Recall thatin a direct data in-
mation MAC if it is accounted-for. jection attack, an adversary only causes the nodes under its control
PROOF. By construction, each sensor noglenly releases its  to each report a data value within the legal raf@ye]. The lowest
confirmation MAC if (1)sreceives an authenticated message from result the adversary can induce is by setting all its malicious nodes
the querier containing the query nondeand the root labels of all to have data value 0; in this case the computed aggregate The
the trees in the final commitment forest and ¢2¢ceives all labels highest result the adversary can induce is by setting mtides un-
of its off-path vertices (the sibling vertices to the vertices on the der its control to yield the highest valueln this case the computed
path from the leaf vertex correspondingstto the root of the com- aggregate i§ + ur. Clearly any aggregation value between these
mitment tree containing the leaf vertex in the commitment forest), two extremes is also achievable by direct data injection. The bound
and (3)s is able to recompute the root commitment value that it proven in Theorem 12 falls exactly on the range of possible results
received from the base station and correctly authenticated, and (4)achievable by direct data injection, hence the algorithm is optimal
s verified that all the computations on the path from its leaf vertex by Definition 2. [J
Us to the root of its commitment tree are correct, i.e., there are no

inconsistencies on the path framg to the root of the commitment The optimal security property holds regardless of the number or
tree containingls. Since the hash function is collision-resistant, fraction of malicious nodes; this is significant since the security
it is computationally infeasible for an adversary to provideith property holds in general, and not just for a subclass of attacker

false labels that also happen to compute to the correct root com-multiplicities. For example, we do not assume that the attacker is
mitment value. Hence, it must be thatvas accounted-for in the  limited to somep fraction of the nodes in the network.

commitment forest. [ 5.2 Congestion Complexity

Lemma 11 The querier can only receive the correct final XOR We now consider the congestion induced by the sesureal-
check value if all the legitimate sensor nodes replied with their con- gorithm. Recall that node congestion is defined as the communi-
firmation MACs. cation load on the most heavily loaded sensor node in the network,



and edge congestion is the heaviest communication load on a given The COUNT Aggregate. The queryCOUNT is generally used

link in the network. We only need to consider the case where the to determine the total number of nodes in the network with some

adversary is not performing an attack. If the adversary attempts property; without loss of generality it can be consideresba ag-

to send more messages than the proven congestion bound, legitigregation where all the nodes have value either 1 (the node has the

mate nodes can easily detect this locally and either raise an alarmproperty) or 0 (otherwise). More formally, each sensor neHas

or refuse to respond with their confirmation values, thus expos- a data values € {0,1}, and we wish to computé(ay,...,an) =

ing the presence of the adversary. Recall that when we refer to aa; +az+- - - +an. Since count is a special casesafm, we can use

vertexsending and receiving information, we are referring to the the basic algorithm fosum without modification.

commitment tree overlay network that lies over the actual physical The AVERAGE Aggregate. The AVERAGE aggregate can be

aggregation tree. computed by first computing treum of data values over the nodes
of interest, and then theounT of the number of nodes of interest,

Theorem 14 Each vertex u receives the labels of its off-path ver- and then dividing theum by theCouNT.

tices and no others. The ®-QUANTILE Aggregate.In the ®-QUANTILE aggregate,

we wish to find the value that is in thn-th position in the sorted

list of data values. For example, the median is a special case where

& = 0.5. Without loss of generality we can assume that all the data

values are distinct; ties can be broken using unique node IDs.

If we wished to verify the correctness of a proposeduantileq,

we can perform @ OUNT computation where each nogpresents a

valuea, = 1 if its data values < q and presenta, = 0 otherwise. If

g is thed-quantile, then the computed sum should be equdirto

Hence, we can use any insecure approxindaguantile aggrega-

tion scheme to compute a proposéequantile, and then securely

test to see if the result truly is within the approximation bounds of

the d-quantile algorithm.

PROOF Since, when the vertices are disseminating their labels
in the result-checking phase, every vertex always forwards any la-
bels received from its parents to both its children, it is clear that
when a label is forwarded to a verta it is eventually forwarded
to the entire subtree rooted it

By definition, every off-path verted; of u has a parenp which
is a node on the path betweerand the root of its commitment
tree. By constructionp sends the label af; to its siblingu, which
is on the path tai (i.e., eitheruy is an ancestor ofi, or u; = u).
Hence, the labell; is eventually forwarded ta. Every vertexu;
that is not an off-path vertex has a siblinf which is not on the
path between and the root of its commitment tree. Henaés not
in the subtree rooted af. Since the label off] is only forwarded
to the subtree rooted at its sibling and nowhere else, the Ialngl of 7. CONCLUSION
never reaches. [ In-network data aggregation is an important primitive for sensor

network operation. The strong standard threat model of multiple
Theorem 15 The sum algorithm induces {log? n) edge conges- Byzantine nodes in sensor networks requires the use of aggrega-
tion (and hence mlogzn) node congestion) in the aggregation tion techniques that are robust against malicious result-tampering
tree. by covert adversaries.

We present the first optimally secure aggregation scheme for ar-
gitrary aggregator topologies and multiple malicious nodes. This
contribution significantly improves on prior work which requires
strict limitations on aggregator topology or malicious node multi-
plicity, or which only yields a probabilistic security bound. Our al-
gorithm is based on a novel method of distributing the verification
of aggregation results onto the sensor nodes, and combining this
with a unique technique for balancing commitment trees to achieve
sublinear congestion bounds. The algorithm indL@(aAIog2 n)
node congestion (wher& is the maximum degree in the aggre-
gation tree) and provides the strongest security bound that can be
proven for any secure aggregation scheme without making assump-
tions about the distribution of data values.

PROOF Every step in the algorithm except the label dissemi-
nation step involves either broadcast or convergecast of message
that are at mosD(logn) size. The label-dissemination step is the
dominating factor.

Consider an arhitrary edge in the commitment-tree between par-
ent vertexx and child vertexy. In the label dissemination step,
messages are only sent from parent to child in the commitment tree.
Hence the edggy carries exactly the labels thatreceives. From
Theorem 14y receivesO(logn) labels, hence the total number of
labels passing througky is O(logn). Hence, the edge congestion
in the commitmentree isO(logn). Now consider an arbitrary ag-
gregation tree edge with parent nadand child nodes. The child
nodev presents (i.e., sends) at most focpmmitment-tree vertices
to its parentu, and hence the edgev is responsible for carrying
traffic on behalf of at most log commitment-tree edges — these 8. REFERENCES
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APPENDIX
A. PROOF OF LEMMA 8

We first prove the following:

Lemma 16 Let F be a collection of commitment trees of height at
most h. Suppose there is a set U of accounted-for leaf-vertices with
distinct labels y,. ..,un and committed valueg y...,vmin F. Let

the set of trees that contain at least one member of UgbdEfine
val(X) for any forest X to be the total of the aggregation values at
the roots of the trees in X. Then &) > 51", vi.

PROOF Proof: By induction orh.

Base caseh = 0. Then all the trees are singleton-trees. The total
aggregation value of all the singleton-trees that contain at least one
member ol is exactlyy ™, vi.

Induction step: Assume the theorem holds lipiland consider
an arbitrary collectiorr of commitment trees with at most height
h+ 1 where the premise holds. If there are no trees of hdight
then we are done. Otherwise, let the Bdie all the root vertices
of the trees of heightt + 1. Conside~’ = F\R, i.e., remove all
the vertices inR from F. The result is a collection of trees with
height at mosh. Let T be the set of trees iR’ containing at
least one member &f. The induction hypothesis holds f&¢, so
val(Tg) > S, vi. We now show that replacing the vertices from
R cannot produce afe such thawal(Tg) < val(Tg/). Each vertex
r from Ris the root of two subtrees of heighin F. We have three
cases:

Case 1: Neither subtree contains any membetd.oThen the
new tree contains no memberslbf and so is not a member &f.

Case 2: One subtreag contains members df. Since all the
members ofJ are accounted-for, this implies that there is no in-
consistency at. Hence, the subtree without a membetJomust
have a non-negative aggregate value. We knowrtipatforms the
aggregate sum correctly over its inputs, so it must have aggregate
value at least equal to the aggregate valug .of

Case 3: Both subtrees contain memberd oSince all the mem-
bers ofU are accounted-for, this implies that there is no inconsis-
tency atr. The aggregate result ofis exactly the sum of the ag-
gregate values of the two subtrees.

In case 2 and 3, the aggregate values of the roots of the trees of
heighth+ 1 that were inTg, was no less than the sum of the aggre-
gate values of their constituent subtree§gn Henceyval(Tg) >
val(Te) > 50, vi. O

Let the commitment forest in Lemma 8 Be Let the set of trees
in F that contain at least one of the accounted-for leaf-vertices be
T. By the above lemmajal(T) > ™, vi. We know that there are
no root labels with negative aggregation values in the commitment
forest, otherwise the querier would have rejected the result. Hence,
val(F) >val(T) > 3", v. [ |



