
Foundations and TrendsR© in

sample
Vol. xx, No xx (xxxx) 1–53
c© xxxx xxxxxxxxx
DOI: xxxxxx

Secure Distributed Data Aggregation

Haowen Chan1, Hsu-Chun Hsiao2, Adrian

Perrig3 and Dawn Song4

1 Carnegie Mellon University, USA, haowenchan@cmu.edu
2 Carnegie Mellon University, USA, hchsiao@cmu.edu
3 Carnegie Mellon University, USA, perrig@cmu.edu
4 University of California, Berkeley, USA, dawnsong@cs.berkeley.edu

Abstract

We present a survey of the various families of approaches to secure ag-

gregation in distributed networks such as sensor networks. In our sur-

vey, we focus on the important algorithmic features of each approach,

and provide an overview of a family of secure aggregation protocols

which use resilient distributed estimation to retrieve an approximate

query result that is guaranteed to be resistant against malicious tam-

pering; we then cover a second family, the commitment-based tech-

niques, in which the query result is exact but the chances of detecting

malicious computation tampering is probabilistic. Finally, we describe

a hash-tree based approach that can both give an exact query result

and is fully resistant against malicious computation tampering.

Contents

1 Introduction 1

2 Problem Definition 4

2.1 Network Model 4

2.2 Security Infrastructure 6

2.3 Node Congestion 6

2.4 In-Network Aggregation 6

2.5 Threat Model 8

2.6 Input-Resilient Functions 10

3 Early Work on Secure Aggregation 13

3.1 One-hop Verification 13

3.2 Witness-based Verification 15

3.3 Summary and Discussion 16

3.4 References and Further Reading 17

4 Resilient Estimation 19

i

ii Contents

4.1 Authenticated Single Data Values 19

4.2 Verifiable Sketches 21

4.3 Set Sampling 24

4.4 Summary and Discussion 28

4.5 References and Further Reading 29

5 Commitment-based Techniques 31

5.1 The Aggregate-Commit-Prove Technique 31

5.2 SIA: Secure Information Aggregation 32

5.3 Hash Trees for Hierarchical Aggregators 35

5.4 SDAP: Probing the Hierarchical Hash Tree 37

5.5 SecureDAV: Distributed Verification 40

5.6 Secure Hierarchical In-Network Aggregation 41

5.7 Summary and Discussion 46

5.8 References and Further Reading 47

5.9 Conclusion 48

References 49

1

Introduction

Recent advances in technology have made the application area of highly

distributed data collection networks increasingly important. One exam-

ple of this is sensor networks [39], which are wireless multihop networks

composed of a large number of low cost, resource constrained nodes.

Another example occurs in distributed systems such as distributed

databases [34], peer-to-peer networks [58] or “grid” computing, where a

large number of nodes are distributed over the Internet while engaging

in some shared data collection or processing task.

A common task in these systems is the transmission of data towards

a designated collection point, or sink. In sensor networks, the sink is

typically a wireless base station that relays the collected data to an off-

site server; in other distributed systems the sink may be a designated

coordinating server that is responsible for archiving the data and an-

swering user queries. The most straightforward method for collecting

data is for each node in the network to send their raw data directly

to the sink, via multi-hop routes in which intermediate nodes act as

passive message forwarders and neither inspect nor modify the data.

However, this approach is communication inefficient since not all of the

collected data may be relevant or necessary for the application.

1

2 Introduction

An alternative method for data collection is to observe that, com-

monly, only very simple aggregation functions are queried on the data.

An aggregation function takes as inputs all the data values of the nodes

in the network, but outputs only a single scalar. Examples of common

aggregation functions include the sum of all data values; the count of

the number of nodes fulfilling a given predicate, the minimum or max-

imum data value over the nodes in the network, and various measures

such as mean and median. Since the result of computing an aggrega-

tion function is only a single value, this computation can be efficiently

distributed in the network by having intermediate nodes compute sub-

aggregates, leading to an extremely communication-efficient protocol.

This technique is known as in-network aggregation [39] and is briefly

described in Section 2.4.

The efficiency of in-network aggregation comes at a price to re-

silience, however, since it relies on the honest behavior of intermediate

nodes in terms of computing accurate sub-aggregates. For example,

for a sum computation, a malicious intermediate node with two chil-

dren each reporting a data value of ‘1’, could report an inaccurate

sub-aggregate value of ‘100’ instead of the correct value of ‘2’, thus

skewing the final result by a large amount. Such attacks are not easily

preventable since the efficiency of in-network aggregation relies on in-

termediate sub-aggregators reporting only concise summaries of their

received values; since a large fraction of the input data is hidden by

necessity, this exposes the network to greater opportunities for attack.

In this article, we provide an overview of the known approaches

towards combating such malicious mis-aggregation attacks. Ideally, a

secure aggregation protocol should offer three key features: it should (1)

produce accurate answers (typically, an accuracy guarantee bounded by

some function of the number of malicious nodes in the network), (2)

require only low communication overhead, and (3) be resilient against

general node compromise models. We present a brief summary of sev-

eral approaches drawn from a selection of the current literature as well

as a more in-depth tutorial in one of the more important frameworks.

In our selection of covered literature, our goal is to provide the reader

with a general intuitive understanding of the field, rather than to bring

the reader exhaustively up to date with all algorithms for the area.

3

Towards this end, we have opted towards a more tutorial approach in

terms of selecting the publications that most clearly exemplify a certain

class of approaches (or which have been most influential historically),

rather than focusing on breadth or depth of coverage in terms of the

most effective or the most recent algorithms.

The remainder of the article is organized as follows. In Section 2

we define the problem and introduce the notion of in-network aggre-

gation more rigorously. In particular, in this article we focus only on

aggregation computations for which the secure aggregation problem is

feasible: the family of such functions is examined and defined. In Sec-

tion 3 we highlight some earlier work which show the basic flavors of

integrity verification and result checking for secure aggregation. The

existing literature on secure aggregation can be broadly divided into

two categories: the first category uses verifiable sampling to provide

resilient probabilistic estimates of the aggregate result; the second cat-

egory uses commitment verification, which, unlike the first category,

can provide highly precise results for which any malicious tampering

is immediately evident, but at the cost of availability. We cover these

approaches in Sections 4 and 5, respectively.

2

Problem Definition

For concreteness and brevity, in the rest of the article, we discuss se-

cure aggregation using the context and terminology of sensor networks.

Much of the published literature in secure aggregation is motivated

by the application context of sensor networks; in general the models

and analysis are often sufficiently general to apply to various other dis-

tributed data collection and computation networks such as peer-to-peer

and grid computing networks.

2.1 Network Model

A sensor network is a network that consists of one or more base stations

and a large number of sensing devices. A base station is often imple-

mented in the form of a gateway connected to a reliable power supply,

which communicates via a high bandwidth connection (e.g., through a

wired Internet connection, or a LAN) with a reliable server situated in

a secure location. The actual gateway device only forwards messages

from the sensor network to the remote secure server, and does not per-

form any cryptographic operations (i.e., the gateway device does not

store any keys or sensitive data, and all authentication and encryption

4

2.1. Network Model 5

BS

S1

S2

S3

S4

S5 S6

F (r1, r2, · · · , r6) = ?

Fig. 2.1 Modeling an aggregation network as a connected graph.

is performed on the secure remote server). Hence, the remote server

and the wireless gateway can be conceptually considered a single trust-

worthy network entity, which we will concisely denote with the term

base station. For simplicity, we focus on the case where there is only

one base station. The network administrator accesses and administers

the network through this base station. The remainder of the sensor net-

work consists of a number of sensor nodes which communicate to form

a wireless mesh network. Sensor nodes typically have relatively lower

communication and computational capabilities due to limited power

and cost. The main task of the sensor nodes is to collect environmental

information and send such information back to the user via the base

station. A sensor node typically performs three kinds of tasks: it senses

(gathers locally-produced raw data), sends and receives messages from

other sensor nodes (often acting as a forwarding router for network),

and performs aggregation computations.

Formally, we can model the network as a connected graph with n+1

vertices as shown in Figure 2.1. There is a special vertex BS which de-

notes the base station, and each of the the remaining vertices s1, . . . , sn

each represents a sensor node. Every sensor node si is associated with

a reading ri. We draw an edge between every pair of vertices that cor-

respond to sensor nodes within mutual transmission/reception range

of each other. The distributed aggregation problem is the problem of

computing a given function F over all the readings r1, . . . , rn, such that

the base station BS receives the correct value of F (r1, . . . , rn).

6 Problem Definition

2.2 Security Infrastructure

We assume that each sensor node has a unique identifier s and shares a

unique secret symmetric key Ks with the querier. We assume the sensor

nodes have the ability to perform symmetric-key encryption and de-

cryption as well as computations of a collision-resistant cryptographic

hash function H [36, 50]. We also assume that an efficient broadcast

authentication scheme is available, which allows the base station to

send a message M to all nodes in the network such that each node

can determine that M was sent from the base station (and not forged

by the adversary). A number of highly efficient broadcast authentica-

tion schemes have been proposed, including TESLA [47], µTESLA [37],

the Guy Fawkes scheme [3], and the hash-tree-based scheme [11]. The

specifics of these schemes are out of scope of this article.

2.3 Node Congestion

As a metric for communication overhead, we consider node congestion,

which is the worst case communication load on any single sensor node

during the algorithm. Congestion is a commonly used metric in ad-

hoc networks since it measures how quickly the heaviest-loaded nodes

will exhaust their batteries [39]. Since the heaviest-loaded nodes are

typically the nodes which are most essential to the connectivity of the

network (e.g., the nodes closest to the base station), their failure may

cause the network to partition even though other sensor nodes in the

network may still have high battery levels. A lower communication load

on the heaviest-loaded nodes is thus desirable even if the trade-off is a

larger amount of communication in the network as a whole.

2.4 In-Network Aggregation

We first present the notion of in-network aggregation as presented in

the Tiny Aggregation Protocol (TAG) by Madden et al. [39]. In TAG,

a spanning tree is first computed as a subgraph of the communication

graph; any well-known method may be used to achieve this. Madden

et al. suggest constructing this based on a broadcast tree rooted at the

base station BS such that each node is placed on the spanning tree at a

2.4. In-Network Aggregation 7

Fig. 2.2 Standard tree-based SUM aggregation as described in TAG. Numbers next to
nodes represent data/readings; Numbers and sums on edges represent intermediate sums

sent from nodes to parents.

depth equal to its minimum hop distance from BS. All communications

in the protocol then take place solely along the edges of this spanning

tree.

We describe the aggregation process for real-valued aggregates such

as SUM, and later modify this to address more general computations.

The aggregation process starts at the leaves. Each node that is a leaf

in the tree topology reports its input value (e.g., a sensor reading)

to its parent. Once an internal node has received data from each of

its children, it evaluates the intermediate aggregation operator over

this data and its own reading. These internal nodes are called called

aggregators. In the case of the summation aggregation, the intermediate

aggregation operator is addition, i.e., an intermediate sum of the data

received from each of the node’s children and the node’s own reading

is performed. The result of the intermediate aggregation operation is

reported to the node’s parent, which then repeats the process until the

final sum is computed at the base station. An example of this process

is shown on Figure 2.2.

The above example illustrates that how in-network aggregation can

be performed when F is a summation (SUM) function. In addition

to SUM, COUNT, AVG, and MAX (MIN) are commonly considered

aggregation functions as well. COUNT is a special case of SUM with

8 Problem Definition

each node reporting 1, and AVG can be calculated by SUM/COUNT.

In general, the aggregation functions can be classified into two types:

duplicate sensitive and duplicate insensitive [46]. Duplicate sensitive

functions, such as COUNT and SUM, are functions whose output is

altered when incorporating the same input more than once. On the

other hand, duplicate insensitive functions, such as MAX and MIN, are

functions whose output is invariant to repetitive inputs. For example,

let {r1, r2} = {2, 3}. SUM(r1, r2) = 5 6= SUM(r1, r2, r2) = 8; whereas

MAX(r1, r2) = 3 = MAX(r1, r2, r2).

In-network aggregation greatly reduces the communication over-

head (and thus reduces the node congestion as well) because the base

station only receives a single scalar rather than all data values in the

network. However, the efficiency comes at a price of security, as interme-

diate nodes can report arbitrary values to bias the final aggregate with-

out being detected. Designing secure in-network aggregation schemes is

challenging because despite that the conventional end-to-end authen-

tication can prevent intermediate nodes from illegal modification (i.e.

tampering with the reported values) it also eliminate the possibility

of performing legal modification (i.e. applying in-network aggregation

functions).

2.5 Threat Model

An attacker could attempt to subvert the distributed computation in

a number of ways, namely: outsider attack, eavesdropping, input falsi-

fication, and aggregation manipulation. The last three kind of attacks

require the attacker to compromise at least one node in the distributed

networks. It has been shown that unattended nodes such as sensors are

extremely vulnerable to physical compromise key extraction [30].

(1) Outsider Attack: Outsiders are attackers who have no control

over any devices or cryptographic keys in the network. Hence,

to falsify the final results without being detected, an outsider

could drop packets selectively or replay others’ packets. Such

attacks are relatively easy to deal with using cryptographic

counters to detect replays and resilient communications (such

2.5. Threat Model 9

as retransmissions or multi-path forwarding) to deal with

packet dropping.

(2) Eavesdropping: An attacker controlling a malicious insider

node may inspect the data of incoming messages and dis-

cover information about the sensor readings in the rest of

the network. In this article, we will focus on the property

of integrity, and not examine methods for providing secrecy

from in-network aggregators. Work on providing secrecy for

aggregation include the following: Cam et al. [10] proposes

privacy-preserving aggregation scheme to hide raw read-

ings by replacing them with predefined pattern codes. Con-

cealed Data Aggregation (CDA) [9, 57] leverages homomor-

phism [19] to aggregate encrypted data. PDA [31] achieves

privacy-preserving aggregation under additive aggregation

function using clustering and slicing.

(3) Input Falsification: A compromised node may choose to lie

about its own data value (and its own value only). Such an

attack is usually difficult to defend against within the net-

work since the raw data value of a given node is known only

to that node. The detection of such input anomalies is im-

possible unless certain prior assumptions about data corre-

lation are made. For example, various algorithms for out-

lier detection [1, 7, 8, 52, 54, 55] can detect abnormal sensor

readings based on statistical analysis. However, in order to

focus on the general problem of providing computational in-

tegrity, most secure aggregation protocols do not consider

such anomaly detection mechanisms. In other words, the pro-

tocols in this article all assume that the data value reported

by a node is by definition the “true” value. Various robust

aggregation functions can be selected to ensure that the in-

accuracy inherently allowed by this assumption is bounded;

these measures are discussed in Section 2.6.

(4) Aggregation Manipulation: A more powerful adversary may

be able to compromise some aggregators. A malicious ag-

gregator can report arbitrary subcomputation results and

10 Problem Definition

behave in arbitrary ways to attempt to evade detection.

In this article, we will deal primarily with the forth and most power-

ful kind of adversary, the Aggregation Manipulator. Typically, a secure

aggregation protocol should be able to tolerate the colluding behav-

ior of a significant fraction of malicious aggregators, with the accuracy

of any accepted result being bounded by some function of the rela-

tive fraction of compromised vs legitimate aggregators. Since we are

primarily concerned with the accuracy of the final result, we do not

consider denial-of-service attacks which primarily serve to ensure that

no result, false or otherwise, gets accepted at the base station.

2.6 Input-Resilient Functions

As discussed in Section 2, the literature in secure aggregation com-

monly focuses on general models for which the prior distribution of

sensor readings are not known, thus removing the possibility of de-

fending against an input falsification attack. Under this scenario, the

best we can hope for is defense against the aggregation manipulation

attacks. An important concern is whether it is sufficient to only de-

fend against aggregation manipulation while admitting input falsifica-

tion. It turns out that certain aggregates are more resilient than others

regarding input falsification. Such resilient aggregation functions are

called robust statistics in the statistics literature [33]. For example, the

median is considered a robust measure of central tendency, while the

mean is not. Robust statistics can be leveraged in designing secure

sensor network aggregation protocols robust against input falsification.

In particular, when performing statistical estimation tasks, we should

preferably choose aggregation operators that are resilient to input fal-

sification, since nothing much can be done for non-resilient functions.

Wagner proposed a formalized notion of a resilient aggregation func-

tion [56]. In this framework, we consider an aggregate function compu-

tation as a way to collate a set of signals about a hidden parameter θ.

For example, when a sensor network computes the average of a set of

temperature sensor readings of the sensors in a room, it is not because

the average itself is intrinsically of interest, but because it is correlated

2.6. Input-Resilient Functions 11

to a parameter θ, which is the “true” ambient temperature of the room.

Considered in such a manner, it can be seen that even without the pres-

ence of an adversary, naturally occurring error affects the accuracy and

resilience of the measure (i.e., the aggregate computation). Such error

(with and without the active interference of an adversary) can be ex-

actly quantified. Wagner shows how to precisely evaluate the ability of

the adversary to affect the querier’s view of θ for various measures.

The immediate conclusion is that certain measures such as MIN,

MAX, and unbounded SUM are intrinsically brittle against even small

numbers of falsified input values. For example, an adversary can always

return the largest allowable value (e.g., “INT MAX”) to hide the true

maximum reading; similarly for the unbounded SUM operation it can

always add an arbitrarily large random value to the computation to

completely occlude the true sum.

On the other hand, when the contributions of individual nodes can

only have a bounded amount of influence on the measure, then the

measure can be resilient, and this resilience is quantifiable. Wagner

proposes a metric, α, which indicates the relative inflation factor in a

measure’s error, under the presence of k adversaries, as compared with

a baseline of no adversaries. The larger the α, the more resilient the

aggregation function is. It is shown that measures such as truncated av-

erage, trimmed average, median and count can be quantifiably resilient

against input falsification under certain conditions. These results are

shown in Table 2.1. In subsequent discussions, we will assume that the

aggregate function being computed by a given protocol satisfies the de-

sired property of resilience against input falsification as quantified here,

thus leaving us to focus solely on the mechanisms needed to detect the

aggregation manipulation attack.

12 Problem Definition

Resilience Factor α

[l, u]-truncated average 1 + (u − l)σ · k/
√

n

5%-trimmed average 1 + 6.278k/n (for k < 0.05n)

median
√

1 + 0.101k2 (for k < 0.5n)

count 1 + O(k/
√

n)
Table 2.1 Wagner’s Resilience Measure for Various Aggreation Functions for k compromised

nodes out of n; σ is the assumed s.d. of the sensor reading from the actual value θ

3

Early Work on Secure Aggregation

In this section we review some of the initial work in the area of se-

cure aggregation. Unlike most of the subsequent work in the literature,

these protocols provide only limited security properties against limited

adversary models. Nonetheless, they are important because they are

the first schemes to demonstrate several common design philosophies

such as redundancy and verification.

3.1 One-hop Verification

Suppose the attacker assumption is constrained to a single-node at-

tacker (but the actual identity of the compromised node is unknown).

To prevent this single malicious node from presenting falsified aggre-

gation results, we can simply try to ensure that the aggregation com-

putation of each node is checked by some other node in the network.

A natural candidate for the verifier in a tree topology is the parent of

the aggregator. This approach is called one-hop verification [32]. The

high level algorithmic strategy is for each aggregator node to forward

its entire set of inputs to its parent, so that the parent can verify its

child’s aggregation operation. This ensures that any single node can-

13

14 Early Work on Secure Aggregation

MA = {IDA|AggA|MACKAD
(AggA)} MB = {IDB|AggB|MACKBD

(AggB)}

{MA, MB}, IDC |AggC |MACKCE
(AggC)

Fig. 3.1 One-hop Verification in the Hu-Evans model

not perform an aggregation manipulation attack since everything that

it computes is fully audited by its immediate parent.

The exact protocol is as follows; an example of the general structure

of messages is shown in Figure 3.1. Each leaf node si in the tree reports

its reading ri to its parent in the form:

Mi = {IDi‖N‖ri‖MACKi
(ri)}

In this message, IDi is the identifier of si, ri is the reading of node

si, N is a nonce associated with the current query (to prevent replay of

messages from previous queries), and Ki is a key associated with node

si that is shared with the grandparent of si. Similarly, each aggregator

node si that receives incoming messages M1, . . . , Mk will construct the

following message to its parent:

{M1, . . . , Mk}, IDi‖N‖Aggi‖MACKi
(Aggi)

In this message, Aggi is the result of the sub-aggregation computa-

tion over the input values of the messages of the children (Mi, . . . , Mk).

For example, if we are evaluating the SUM operation, and the children

report values {1, 2, 3} in M1, M2 and M3, then Aggi = 1 + 2 + 3 = 6.

The verification process is as follows: since each grandparent node

(e.g., node D in the example in Figure 3.1) knows the MAC keys used

by all of its grandchildren, it can re-check all the subcomputations of its

immediate children (in the example, node D would be able to exactly

check the computations performed by C). In this manner, no single

adversary node can maliciously cheat in its subcomputation without

3.2. Witness-based Verification 15

being detected by its (legitimate) parent. On the other hand, an ad-

versary controlling two nodes sharing a parent-child relationship can

freely forge the aggregation results of the malicious child node with-

out detection because the audit process only checks for the accuracy of

computations one-hop down from each legitimate node.

3.2 Witness-based Verification

We now consider the case where only a single aggregator is present,

and the purpose of aggregation is to reduce the communication load

over the (potentially expensive) link from the single aggregator to the

distant querier. In other words, every reading is forwarded to the aggre-

gator without in-network aggregation. Clearly, in this case, we cannot

say that the querier should also function as the auditor since this would

involve having the aggregator supply all the sensor node readings over

the expensive long distance link. A possible approach is then to build

in redundancy into the system, by having multiple redundant aggre-

gators, or witnesses. However, instead of providing multiple aggregate

reports to the distant querier, these redundant aggregators can simply

attest to the fact that they agree with the aggregate reported by the

primary aggregator. In this sense, they are performing a pure valida-

tion function, and are hence called witnesses to the authenticity of the

aggregation report [20].

Specifically, in this scheme, a set {r1, . . . , rn} of readings is for-

warded to a single aggregator, which then computes the aggregate func-

tion v = F (r1, . . . , rn). For resilience, the proposed scheme replicates

the aggregation functionality identically over m redundant aggregators

or witnesses. The witnesses perform identical functions as the aggrega-

tor: Each witness wi also collects the full set of readings {r1, . . . , rn} and

computes an aggregation result vi; however it does not forward the full

result directly to the base station but instead computes a short digest

of the result: MACKi
(wi‖vi) using the key Ki shared between wi and

the base station. These digests are collected by the primary aggregator

and forwarded to the base station. The base station then inspects the

reported result, and recomputes the respective MACs from each of the

witnesses: if at least a majority of the witnesses agree that the result is

16 Early Work on Secure Aggregation

correct, then it is accepted, otherwise, it is rejected. With sufficiently

long cryptographic MACs, the adversary cannot forge the response of a

witness unless it directly compromises the witness; hence the attacker

needs to compromise a majority of the witness nodes to force accep-

tance of an incorrect result. Du et al. [20] discuss a variant where the

MAC length is shortened to k bits to reduce communication overhead:

if the desired upper bound on the chance of an incorrect result being

accepted is no more than 2−δ then k must be at least 2(δ/m + 1) bits,

thus causing a total additional overhead of 2(δ+m) bits of communica-

tion. The coefficient of scaling with increasing m (2 bits per additional

witness) is surprisingly small indicating that the witness set should be

made as large as possible: in most networks (which would need to use

peer sensor nodes as witnesses) the main constraint on the witness set

size would be the limited number of nodes which are able to efficiently

receive the exhaustive set of sensor readings from the entire network.

3.3 Summary and Discussion

The algorithms in this section demonstrate two important design el-

ements which have been extended and developed by subsequent ap-

proaches:

(1) Data Authentication. One-hop verification and witness-

based verification provide good examples of the necessity of

using authentication primitives such as MACs to authenti-

cate the origin of each input and sub-result. Without such

authentication, for example, an adversary could insert many

false input elements and untraceably skew the aggregation

result.

(2) Commitment and Verification. Each aggregator node

commits to a set of inputs and a result of the computation

over these inputs, which is then verified through a process of

having redundant elements repeating the computation. For

the one-hop verification technique, the redundant verifier is

the parent of each aggregator node; for the witness-based ver-

ification scheme, the aggregation operation is replicated over

3.4. References and Further Reading 17

several redundant aggregator nodes. This pattern of commit-

ment and subsequent verification is the basis of more sophis-

ticated schemes in Section 5.

The basic approaches of one-hop verification and witness-based ver-

ification have a clear drawback: only a small, fixed number of verifiers

need to be compromised in order for the adversary to completely break

the security of the system. For the case of one-hop verification, any com-

promised child-parent pair can successfully avoid audit; in the witness-

based scenario, if a majority of the witnesses are compromised, then the

adversary can cause any aggregate result to be accepted. Despite these

disadvantages, these basic schemes nonetheless have the advantages of

being relatively simple to implement, and are relatively efficient for low-

threat applications. The additional communication overhead of these

schemes is exactly proportional to the amount of redundancy that is

built into the system, and if this redundancy factor is considered a con-

stant then the total communication overhead is linear in the size of the

network, i.e., the additional per-node communication overhead is con-

stant. All of the more secure algorithms in this article involve asymp-

totically more overhead than this. In addition, building in redundant

structures enables the system to not just detect incorrect results, but

also actively recover from certain failures (especially, sporadic random

errors and failures, which are likely in practice to be more common

than malicious attacks). For example, in the witness-based scheme, if

the designated aggregator breaks down or returns incorrect results, any

of the witnesses are able to take over the role of aggregator, thus en-

suring that service is not disrupted.

3.4 References and Further Reading

One-hop verification is first proposed by Hu and Evans [32]. They de-

scribe a number of specific optimizations for the basic one-hop verifi-

cation scheme, including how to efficiently update and use these keys

that need to be shared between non-adjacent nodes in the network (the

keys are intended to be used only once per aggregation period, hence

the lack of nonces in the protocol); for example, through the use of a

18 Early Work on Secure Aggregation

one-way hash chain [32]. A number of additional extensions to provide

secrecy of the data from a single in-network attacker are also proposed

by Jadia and Mathuria [35].

The basic witness-based scheme is described by Du et al. [20].

Cristofaro et al. [18] generalize the witness based approach to hier-

archical aggregation, using multiple redundant aggregator nodes per

level. Whereas the Du et al. scheme used a strict threshold scheme for

determining whether to accept a given aggregation result (accept only

if t or more witnesses agree exactly on the result, reject otherwise),

Cristofaro et al. use a heuristic metric called “quality of information”

(QoI) to measure the level of confidence on a given sub-aggregation

result. A result that has a strong level of agreement between witnesses

will contribute a high QoI, whereas a large amount of inconsistency

would result in a low QoI. This QoI metric is then propagated in the

hierarchical aggregation computation process (low QoI sub-results will

contribute to lower QoIs on computations dependent on these results).

In the end, the base station is presented with both an aggregation re-

sult and a measure of confidence on the result, which the base station

can use as evidence to accept or reject the final aggregation result. A

related approach similar to this QoI metric-based scheme is reputation-

based integrity checking [24], where nodes evaluate trustworthiness of

other nodes based on their past behavior, and determine whether to

accept a received aggregate based on the sender’s trustworthiness level.

4

Resilient Estimation

In this section, we discuss a general class of approaches in which accu-

racy of the aggregation computation is sacrificed in return for making

the protocol resilient to malicious manipulation. Specifically, these ap-

proaches typically compute a statistical estimator for the aggregate

value; while using the estimator is less accurate that computing the

precise aggregate, it is easier to secure, because there is less reliance on

the honest behavior of intermediate aggregators.

4.1 Authenticated Single Data Values

Suppose communication overhead is not a concern. Then a simple way

to ensure the full security of any aggregation computation would be

for the base station to request the readings of every sensor node in the

network. Each node could return its respective reading, authenticated

using the key that it shares with the base station. For example, the

message from node si could be formatted as follows:

IDi‖N‖ri‖MACKi
(IDi‖N‖ri)

In this message, the node si with identifier IDi is reporting a read-

19

20 Resilient Estimation

ing ri for the query associated with the nonce N (e.g., N could be a

random value selected by the querier to identify the query, or a strictly

increasing sequence number). This message is authenticated using the

key Ki which is shared only between the node si and the base sta-

tion. Note that this is different from the Hu and Evans method [32]

described in Section 3 in which Ki was shared between the node and

its grandparent.

The use of the message authentication code ensures that the mes-

sage cannot be tampered with en-route between any legitimate node

and the base station. In other words, this scheme is fully secure against

manipulation attacks (malicious nodes may still falsify their own read-

ings, but as explained in Section 2, such attacks are out of the scope

of the schemes discussed in this article).

However, exhaustively forwarding the exact data value of every node

is extremely communication-intensive. A straightforward method of re-

ducing this communication overhead is to sample only a small set of

data values in the hope that this contains enough information to es-

timate the actual aggregate. For example, if the base station chooses

10 nodes uniformly at random, and samples each of their readings, it

can use the average of the readings reported by the small sample as

an unbiased estimator of the average of the readings over the entire

sensor node population. Because all the readings from the sample are

end-to-end authenticated from the sampled node to the base station,

data manipulation attacks (where the data is altered en-route from the

node to the base station) remain infeasible. However, it is clear that,

the smaller the sample, the greater the potential error of the estimator.

Using a sample set is an example of choosing a set of authenti-

cated single data values, which are authenticated from their respective

sources, in order to estimate the target aggregate. Typically, aggre-

gate estimators use more sophisticated sampling methods than uni-

form random sampling. One concept that is often used is the notion of

a predicate test [60], which is essentially a representative proof of set

nonemptiness. Consider the following query: the base station queries

the network asking if there are any nodes that satisfy a certain query

predicate (e.g., a fire alarm system could query, “are there any sensors

4.2. Verifiable Sketches 21

sensing a temperature above 100◦C”). The network returns either a

negative answer (i.e., “no sensors satisfy the predicate”) or the read-

ing of a single sensor that satisfies the predicate, authenticated using a

MAC computed with the sensor-base station secret key. In the case of

the positive answer, we have the property that the single representative

sensor’s message is equivalent to a proof that the predicate set is indeed

nonempty: specifically, the adversary could not have forged this mes-

sage if the representative node was not compromised (if the representa-

tive node was compromised, then it is equivalent to a data falsification

attack, not an aggregation computation manipulation). Hence, if the

adversary can be prevented from data falsification (e.g., if the query

predicate is structured around an immutable property of the node, such

as “are there any sensors with a ID that is above 1000”) then this prim-

itive is a powerful tool for resiliently testing a population. Note that if

resilient routing is assumed, the querier can obtain an implicit proof of

set emptiness in the case of a negative answer (none of the nodes re-

turns a satisfying reading). Moreover, the querier can further obtain an

explicit proof of set emptiness by querying the negation of the original

predicate. We detail these techniques in the remainder of this section.

4.2 Verifiable Sketches

Further extending the notion of sampling using authenticated single

values, a “sketch” is a concise statistical data structure that captures

information about aggregate values using just a small set of represen-

tatives. An exhaustive coverage of statistical sketches is beyond the

scope of this article: we briefly highlight one of the more commonly-

used primitives, the “FM-Sketch” [22]. An FM-Sketch is a bitmap of

size k that is used to concisely estimate the number of distinct elements

in a set. At the start of the algorithm, the entire bitmap is initialized

to 0. To insert an element ri into the sketch, its k-bit hash h(ri) is

computed, and the bit at position j of the sketch is set to be 1, where j

is the position of the least significant 1 bit in this hash; this means that

all the bits after position j are 0s. This process is shown in Figure 4.1.

The (0-indexed) position of the leftmost 0 bit is an estimator of the

total number of distinct elements inserted into sketch. Specifically, let

22 Resilient Estimation

Fig. 4.1 FM-Sketch update process.

R be the random variable denoting the position of the leftmost 0 in

the sketch after the insertion of n elements. Then E(R) = log2(φn)

where φ ≈ 0.77351. Hence, R can be used to estimate n. The main

drawback with the FM-sketch is that the variance of the estimate can

be quite large; this error is reduced by using m distinct sketches (each

associated with a different hash function) and taking the mean of all

the m estimates.

The FM-sketch is concise (O(log n) bits for a network of size n),

updates quickly and efficiently, and most importantly it is decompos-

able (i.e., the sketch of A∪B is the bitwise OR of the sketch of A and

the sketch of B). Decomposability implies that FM-Sketch can be effi-

ciently implemented in a distributed aggregation scenario: each internal

aggregator node receives sketches from each of its children, computes

the bitwise OR of all the sketches, and forwards the result to the ag-

gregator’s parent. Moreover, the FM-sketch is easy to make resilient,

because each 1-bit in the sketch is a representative value similar to the

one in a set nonemptiness query. In other words, to maintain a verifiable

FM sketch of size k, we need only ensure that each 1-bit that was set

due to the inclusion of some node si be associated with a MAC using

the key Ki shared only between si and the base station. When the base

station receives the final sketch, it then checks the MACs associated

with every 1 bit in the sketch. Suppose the adversary is unable to freely

choose the elements to insert into the sketch (e.g., if we are performing

a COUNT operation, each node could be constrained to only report a

specific canonical ID as an input into the sketch - since IDi must be

authenticated by the specific key Ki, the adversary cannot make up

4.2. Verifiable Sketches 23

arbitrary IDs). Then, the adversary finds it infeasible to force any bit

in the sketch to 1 if it would have been set to 0 in a legitimate compu-

tation of the sketch, because this would necessarily involve falsifying a

MAC with a key that it does not possess.

On the other hand, the adversary could force 1 bits in the sketch

to 0 by dropping messages. The problem of avoiding dropped messages

is a generic problem of resilient routing. A comprehensive discussion

of resilient routing is out of the scope of this article; we discuss the

Synopsis Diffusion scheme [46] as an example. The synopsis diffusion

framework is motivated by the observation that FM-sketches are order

and duplicate insensitive. This means that sub-sketches can be arbitrar-

ily replicated and re-routed in a redundant fashion without altering the

final result. In particular, for a single base-station network we can use a

number of similar-length routes between a node and the base station to

forward the message to the base station without an significant increase

in communication overhead. To achieve redundancy, Synopsis Diffu-

sion essentially makes use of all possible minimum-hop-length paths

between a node and the base station to forward data. Essentially, each

node is labelled with its hop distance from the base station; aggregation

proceeds as normal (with the farthest nodes initiating messages) but

instead of using a spanning tree topology where each node forwards

just one message to a single parent, in Synopsis Diffusion, each node

forwards its computed aggregate sketch to every node within trans-

mission range that is one hop closer than itself to the base station.

This process is shown in Figure 4.2. The end result is that each data

value gets forwarded using a multitude of highly redundant paths; an

attacker which does not control a large number of nodes will find it

difficult to block a significant fraction of the messages from reaching

the base station.

If we assume that the total number of nodes in the network, n, is

known, then we can use this knowledge to detect message dropping.

For example, in a count c of the number of nodes satisfying a certain

predicate, we should be able to expect that the count of the number

of nodes not satisfying the predicate should be approximately n − c.

Hence, if we also compute the complement of any count, and check

24 Resilient Estimation

Fig. 4.2 Synopsis Diffusion in the Rings Topology by Nath et al. [46]

that they sum to a value close to n at the end of the computation, this

suffices as a probabilistic check that values are not being dropped [25].

If the expected result of the Count query can be a-priori upper and

lower bounded by lu and lc respectively, then the bits that are below

position a = ⌈log2(φlc)⌉ are highly likely to be all 1s and the bits that

are above position b = ⌊log2(φlu)⌋ are highly likely to be all 0s. By

not explicitly keeping track of these bits, the sketch can be made more

concise [51]. When the lower bound lu is not known, we can instead

iteratively compute only the high order (rightmost) w bits of the sketch,

until it is determined that with high probability all the bits to the left of

the current window are 1 bits. Essentially, the algorithm first computes

the rightmost w bits of the sketch, and inspects the result to see if the

bit pattern 11 occurs anywhere in the current window. If so, then it

is determined that with high probability all bits in the sketch to the

left of the current window are also 1-bits. If not, then the window is

moved w bits to the left, and the process is repeated. The advantage of

starting the window on the right is that the occupancy of the rightmost

bits are often extremely sparse and thus very few representative MACs

need to be forwarded; as soon as occupancy increases, the incidence

of finding a 11 prefix increases very quickly as well and termination

quickly ensues.

4.3 Set Sampling

In verifiable sketches, every node is sampled by the query in a single

pass, with their responses grouped into buckets of geometrically in-

4.3. Set Sampling 25

creasing size (each subset being double the size of the next smallest

subset). However, each node is sampled exactly once: it belongs to one

and exactly one of these subsets, and many of these subsets are unin-

formative (for example, the largest subset containing half of the nodes

will contain a 1 bit with very high probability). If, instead of doing a

single sampling pass, we allow a multiple-pass algorithm, we can in-

stead attempt to quickly zoom into the specific subsets of interest. For

example, if we split the set of nodes into two equal halves and deter-

mine that the left half has no nodes that satisfy the predicate, then

we know this with certainty: we no longer have to issue any further

queries into this subset. On the other hand, if the right subset has at

least one node that satisfies the predicate, we can imagine performing

further probes into that subset to narrow down the range of possibili-

ties for the count of the number of nodes satisfying the predicate. This

approach is known as “set sampling” [60].

Set sampling proceeds as follows. Recall that a “predicate test”

involves testing a given set for nonemptiness with respect to the given

predicate; if no node in the set satisfies the predicate, then a negative

answer (or no answer at all) is returned; if any node in the set satisfies

the predicate, then the specific node ID and reading that satisfies the

predicate is returned, authenticated to the base station by a MAC

using the node’s key. Given sufficiently redundant and reliable routing

(e.g., flooding), it can be assumed that the attacker is unable to block

messages from being forwarded to the base station, thus a positive

answer to the set query cannot be blocked for an extended amount of

time (this also implies that a lack of a response after a certain amount

of time is equivalent to a negative answer). Despite this useful resilience

property, there remains the problem that a malicious node that is not in

the sampled set may attempt to flood the network with spurious replies

which are eventually discarded at the base station (due to the lack of a

correct MAC), but which take up valuable bandwidth and potentially

prevent legitimate replies from getting through. To deal with this, we

can use a specific form of the predicate test called a “keyed predicate

test”, which uses a shared group key K to securely specify the subset

being tested. Specifically, the base station issues the following query

26 Resilient Estimation

K1

K2

K4

K3

Each leaf key assigned to at most one sensor node (randomly)

Each sensor node holds its leaf key and all parent keys of the leaf key

Level α

K5

K9

K6 K7

K19

Sensor node A

Fig. 4.3 Set Sampling Scheme [60].

using authenticated broadcast (i.e., every receiver of the query can

verify that the query is from the base station):

〈name of K, predicate, N, H(MACK(N))〉
In this query message, N is a nonce associated with the query, and

K is a key shared by all nodes in the sampled set. A positive response

to the set query is the value MACK(N) (computable by all nodes which

know K); a negative response is no response at all. Forwarding nodes,

which may not know K, can inspect the value by computing the hash

H(MACK(N)) and comparing it to the value in the query broadcast;

thus if the attacker controls no nodes in the sampled set it cannot

generate any value that a legitimate node would forward. This prevents

an out-of-set attacker from injecting spurious messages into the set

query to DoS the medium.

The keyed predicate test primitive is then used as follows. A binary

“sampling tree” is constructed (shown in Figure 4.3), where each tree

vertex represents a distinct key. Each sensor node in the network is then

assigned to a distinct leaf in the tree, and is pre-loaded with all the keys

represented by the path from its leaf vertex to the root. For example, in

4.3. Set Sampling 27

Figure 4.3, the sensor node A is associated with the 4th leaf in the tree,

and is thus preloaded with the keys {K19, K9, K4, K2, K1}. It is clear

that performing a keyed predicate test on a given key Ki effectively

samples for the presence of any nodes that satisfy the predicate at the

leaves of the subtree rooted at Ki. For example, performing a keyed

predicate test on K4 in Figure 4.3 will return TRUE if any of the first 4

leaf vertices are assigned to any sensor nodes that satisfy the predicate.

Say a leaf vertex is “black” if its keyed predicate test returns TRUE,

“white” otherwise. Then any black leaf vertex has only black parents.

An example of this is shown in Figure 4.3. Initially, the colors of the

vertices are unknown; the color of each vertex can be determined with

a relevant keyed predicate test. The task of the algorithm is thus to

estimate the total number of black leaves by probing a minimal number

of vertices in the tree.

The Set Sampling algorithm is thus as follows. Let the relative oc-

cupancy ri of a level i be the ratio of the number of black vertices at

that level to the total number of nodes at that level, ni. Let the ab-

solute occupancy ri · ni be the actual number of black nodes at that

level. First, determine a level α which has a “moderately low” relative

occupancy of black nodes (relative occupancy 3/16 < rα < 5/8, or

approximately close to between 1/4 and 1/2 relative occupancy). Once

α has been found, there are two cases: (1) If the absolute occupancy

rα · nα is greater than some constant threshold c3 (which depends on

the tolerable error parameters) then with high confidence, the number

of black leaf vertices can be accurately estimated. The intuition is that

a high absolute occupancy coupled with a low relative occupancy im-

plies a sufficiently fine granularity of detail into how the black vertices

are distributed; for example, it is relatively unlikely that a large frac-

tion of these black vertices have more than one black leaf vertex as a

descendant. For the second case (2), the absolute occupancy is too low

to immediately estimate the number of black leaf vertices. In this case,

the occupancy of the next layer α + 1 is retrieved by probing the chil-

dren of every black vertex at level α (we only need to probe the children

of the black vertices because all the children of the white vertices at

level α are white). Since the relative occupancy can only decrease as

proceeding down the tree, if the absolute occupancy of level α+1 is now

28 Resilient Estimation

above the threshold c3, it reachs the condition to apply the estimation

rule of case (1); if not, the process repeats for level α + 2, and so on,

with a guaranteed termination upon hitting the leaves (in which case

we get an exact answer, not an approximation). This process takes no

more than O(1
ǫ2

log 1
δ
log n) probes for a (ǫ, δ) approximation (a result

that is within 1 ± ǫ of the true value with probability at least 1 − δ).

4.4 Summary and Discussion

In this subsection we describe several variants of the basic notion of

secure sampling. We focus on the problem of computing a “predicate

count”, or a count over the entire network of the number of nodes that

satisfy a certain predicate. Each of the algorithms we have examined

essentially selects a subset of the nodes and asks for a “representa-

tive member”, node that signifies that the set has at least one node

satisfying the predicate. The representative member then returns an

authenticated report attesting to this fact. An estimate of the count of

nodes satisfying the predicate can then be calculated by appropriate

choice of the sampled subsets.

The algorithms presented in this section have the advantage of be-

ing fully resilient: the only way to generate a forged report is by in-

put value falsification. Furthermore, these algorithms can be resilient

against denial-of-service attacks against the verification mechanism it-

self: for example, in many other schemes a malicious node could repeat-

edly cause a verification process to fail and thus block any aggregation

value from being computed. In resilient estimation schemes, since each

data point is a report from a specific node identity, various counter-

measures can be taken against such attacks: for example in the Set

Sampling scheme, a falsified MAC can be traced back to the node that

injected it and that node can then be revoked from the network.

The main drawbacks to the algorithms of this section are their lack

of precision. Because the measures computed in all of these schemes are

probabilistic, the querier only obtains an estimate of the true aggregate,

which contains estimation error. An implementor may be tempted to

use these estimates as a way to verify a precise aggregation result (e.g.,

by discarding any results that disagree with the resilient estimator),

4.5. References and Further Reading 29

but this approach is fraught with pitfalls: besides the problem of false

positives from normal sampling error, the adversary may also skew the

“precise” result within the acceptable error bound causing systematic

overestimates or underestimates; the adversary can opportunistically

inject false values for the precise results as the estimates fluctuate; and

the adversary can keep reporting illegal values in the precise results,

leading to persistent rejection, thus losing the property of resilience

against DoS. Due to these problems it is not considered advantageous

to use resilient estimation as a form of verification, and research efforts

have focused on increasing the precision and efficiency of the estimator

directly.

4.5 References and Further Reading

There has been significant work in the development of techniques and

algorithms for efficient estimation in the no-adversary scenario, where

active maliciousness is not a concern. Various schemes have been de-

veloped for approximating aggregation results while incurring minimal

communication and storage overhead. In such schemes, nodes collab-

oratively generate a concise digest from raw readings, and by evalu-

ating the digest, the querier obtains an approximation of the actual

aggregate. Besides the FM-sketch highlighted in this section (by Fla-

jolet and Martin [22]), researchers have developed sampling-based ap-

proximate algorithms to estimate COUNT/SUM aggregates [5, 14], to

count the number of distinct items [2,6,26], and to find frequent items

with probabilistic guarantee [16, 42]. The applications of such approx-

imate aggregates include identifying large Internet flows for Internet

traffic measurement [21], general query processing in peer-to-peer sys-

tems [4], and counting safety messages in vehicular networks [38, 48].

Other aggregation algorithms include methods for summarizing ap-

proximate order statistic such as medians and quantiles over data

streams [17,27,29,43,61] and distributed data sets [15,28,53]. None of

these algorithms are intrinsically resilient against a malicious insider,

however, many of their design patterns for reducing communication

and storage overhead can be leveraged in the development of secure

aggregation algorithms.

30 Resilient Estimation

The notion of “set sampling”, which leverages “predicate tests” as

a secure form of interactive sampling is due to Yu [60]. The paper

contains a more in-depth analysis of the relative costs and benefits and

possible performance bounds between the static sampling of sketches

and their proposed method of set sampling.

Resilient routing is addressed in various work such as Manjhi et

al. [41], and Nath et al. [46]; since this is a major research topic in

network communications, a comprehensive listing of related work is

beyond the scope of this article.

Computing the complement of any count to ensure that values are

not being dropped was proposed by Garofalakis et al. [25], who also

suggest modifying the FM-sketch primitive to sample approximately

between k and 2k elements out of the total n nodes without prior

knowledge of n; this is achieved by keeping authenticated MACs for

every element inserted into the sketch (instead of just one per bit);

however the elements in the more-populated (low order) buckets are

progressively discarded as the higher order buckets gradually fill up.

The method of narrowing the focus of an FM-sketch to regions

where the most information is being conveyed is due to Roy et al. [51],

who propose this technique as a method of making FM-sketches more

efficient in overhead.

5

Commitment-based Techniques

In the resilient estimation techniques of Section 4, the algorithm

presents an approximation of the true value to the querier; while there

may be random error due to the approximation, the approximation

computation itself is usually completely resilient against data manip-

ulation attacks. In contrast, for commitment-based techniques, the re-

ported aggregation result is usually precise (i.e., unlike resilient esti-

mation, the reported result is always 100% accurate in the absence of

an adversary); however, to attain this precision, these techniques usu-

ally admit a small chance of not being able to detect an active data

manipulation attack in any given query. In Section 5.6 we will exam-

ine a framework in which not only the result is accurate but also data

manipulation is detected with certainty.

5.1 The Aggregate-Commit-Prove Technique

The general flavor for commitment-based secure aggregation was first

proposed in the SIA framework by Przydatek et al. [49] and pro-

ceeds in two phases: (1) “Aggregate-Commit” and (2) “Prove”. In the

“aggregate-and-commit” phase, the aggregation proceeds similarly to

31

32 Commitment-based Techniques

Fig. 5.1 Single Aggregator Topology in SIA.

unsecured aggregation (e.g., as in TAG [39]); however, in the process

of performing the aggregation computations, aggregators commit to

the inputs to their aggregation process by generating cryptographic

hash values. The commitment data structure is forwarded to the base

station along with the aggregation result. In the “proving” phase, the

base station proceeds to probe the aggregators in a series of challenges

to the aggregators to show that their aggregation operation is indeed

conforming to the protocol. Since the commitment structure forces the

aggregators to commit to their respective operations in the aggregation

process, they cannot evade the probe depending on their a-posteriori

knowledge of what is being probed, and any tampering with the aggre-

gation process is revealed by the probe with some probability.

5.2 SIA: Secure Information Aggregation

We now examine the Secure Information Aggregation (SIA) framework

in more detail. We assume a single aggregator topology, with all sensor

nodes reporting directly to the aggregator. The aggregator node com-

putes the aggregate and forwards it to the Querier (or Base Station).

The communication metric is measured in terms of the number of bits

transferred between the querier and the single aggregator node. This

topology is shown in Figure 5.1.

Given access to all the raw sensor readings, the aggregator can com-

pute the sensed aggregate result, and forward it to the base station. The

aggregator then constructs a Merkle Hash Tree [45] (or a Hash Tree)

over the sensor readings (see Figure 5.2). The commitment hash tree is

5.2. SIA: Secure Information Aggregation 33

m0 m1 m2 m3 m4 m5 m6 m7

H

v0,0 = H(v1,0‖v1,1)

v1,0 v1,1

v2,0 v2,1 v2,2 v2,3

v3,0 v3,1 v3,2 v3,3 v3,4 v3,5 v3,6 v3,7

Fig. 5.2 Merkle Hash Tree [45], proposed by Merkle in 1979; arrows indicate inputs to the

hash function H.

constructed in the following way: first, place the hash of each authen-

ticated sensor reading at the leaves (this corresponds to v3,i = H(mi)

in Figure 5.2, where mi = 〈IDi‖ri‖MACKi
(IDi‖N‖ri)〉; N is the per-

query nonce). Then, repeatedly construct parent vertices by computing

the hash function H over hash tree vertices at the previous level; e.g.,

in Figure 5.2, v2,0 = H(v3,0‖v3,1), v1,0 = H(v2,0‖v2,1) and so on.

A hash tree is a data structure supporting selectively verifiable com-

mitment. Specifically, the hash tree root (v0,0 in Figure 5.2) acts as a

concise commitment to the entire tree, including all the values at the

leaves. For a given value of the hash tree root vertex, it is computation-

ally infeasible to find another tree that has the same hash tree root.

This means that, once the aggregator has reported a value for the hash

tree root, it is now “locked” into a specific, fixed tree topology and or-

dering of leaf values. Not only is this commitment non-malleable, but

it is also selectively verifiable. To verify a given leaf value, instead of

needing the entire tree, the querier only needs all off-path vertices from

the verified value to the root: these are all nodes that are siblings to

the vertices from the verified vertex to the root vertex. For example,

to verify just the first value r0 in the sequence of sensor readings in

the tree of Figure 5.2, the querier requests: r0, v3,1, v2,1, v1,1. This al-

lows the querier to compute the sequence of vertices up the path to

the root, finally verifying that the recomputed root is the same as the

34 Commitment-based Techniques

value reported by the aggregator. A successful verification means that

the authenticated reading was included in the specific position in the

tree.

There are a number of ways to use this method of selectively prob-

ing the hash tree to ensure that the reported result is correct for various

aggregation functions [49]. For brevity, we describe the process of check-

ing a result for the median aggregate, which covers the use of several

of the more general property tests.

Detecting Fake Leaf Vertices. Consider the problem of comput-

ing the median of all sensor readings. To prevent cheating from the

aggregator, we can require that the hash tree be sorted by sensor read-

ing value, using node IDs to break ties such that each value is essentially

distinct. In such a case, the median should be the central value in the

hash tree. To “push” the median value to the right or the left (thus

potentially increasing or decreasing the reported median), the adver-

sary could attempt to insert spurious leaf vertices (which do not have

the correct MAC values) in various locations. Since these leaf values do

not carry correct MACs, the malicious tampering is revealed as soon

as they are probed. It can be shown that using 1
ε
ln 1

δ
probes suffices

to detect if the adversary has generated ε or more fraction fake leaves,

with detection probability at least 1 − δ.

Duplicate Detection. Instead of simply generating false leaf ver-

tices, the adversary could instead replicate a given reading multiple

times. For example, the smallest reading could be replicated many

times, causing the median to decrease. SIA detects this by first (1)

checking whether the committed sequence is sorted and then (2) per-

forming probes on neighboring pairs of values to check for duplicates.

The check for sortedness is by repeatedly performing binary searches

for uniformly randomly selected elements. It can be shown that if there

are many out-of-order elements in the committed sequence, the binary

search invariant will eventually be violated in the course of one of these

searches. Specifically, if there does not exist an increasing subsequence

of length at least (1 − ε′1) fraction of the entire sequence, then each

binary search has probability at least 1 − (ε′1/4) of detecting that the

committed sequence was not sorted. Hence, 4/ε′1 searches will detect

5.3. Hash Trees for Hierarchical Aggregators 35

unsortedness with probability at least 1−1/ε′, and 4
ε′
1

ln 1
δ

searches will

reveal unsortedness with probability at least 1 − δ. Once we have es-

tablished that the sequence is mostly sorted with high probability, it is

clear that, if there are a substantial number of duplicates, most of these

duplicates must occur in-place, i.e., next to the duplicated element so

that they do not increase the number of out-of-order elements. Such

in-place duplicates are easily detected by unform random sampling of

neighboring vertices in the hash tree. In this case, if there are ε′′ or more

fraction of in-place fake leaves, it be shown that 1
ε′′
1

ln 1
δ

total pairs of

samples will detect a duplicate with probability at least δ.

Putting it together: Median. Once we have established that the

committed sequence is sorted and there are no (or negligibly few) fakes

and duplicates, the median test is straightforward. First, we check that

the central element is indeed the reported median. Then, to ensure

that the central element is indeed central in the sorted sequence, we

perform additional probes: in each probe, a random element is chosen,

and compared with the alleged median; if it is to the right of the median

element, then it must be larger than the median, and vice versa. If

all of these checks complete successfully, then the reported median is

accepted.

5.3 Hash Trees for Hierarchical Aggregators

The single aggregator SIA can be extended to support multiple hier-

archical aggregators [13, 59]. The simplest extension of the hash tree

structure to support multiple aggregators is to have the hash tree follow

the topology of the network exactly.

An example of this is shown in Figure 5.3, depicting the construction

of a topology-following hash tree for the topology of Figure 2.2. In this

example, sensor node G constructs a leaf vertex consisting of its input

value rG (e.g., a sensor reading) and its node ID G. Each leaf node

in the network topology transmits its leaf vertex to its parent (e.g., G

sends its leaf vertex to F).

Each internal (non-leaf) sensor node i in the topology receives from

each of its children a hash tree vertex. The parent node i then generates

36 Commitment-based Techniques

G0 = 〈H ′ [IDG‖rG‖MACKG
(IDG‖N‖rG)]〉

F1 = 〈H [vF,1 = rF + rG‖F0‖G0]〉

C1 = 〈H [vC,1 = vF,1 + rC + rE‖C0‖E0‖F1]〉

A1 = 〈H [vA,1 = rA + vB,1 + vC1
+ rD‖A0‖B1‖C1‖D0]〉

R = 〈H [vR = rH + vA,1 + rI‖H0‖A1‖I0]〉

Fig. 5.3 Basic hash tree, showing derivations of some of the vertices. For each sensor node
X, X0 is its leaf vertex, while X1 is the internal vertex. On the right we list the labels of

the vertices on the path of node G to the root.

its own leaf vertex, and creates a new parent over its leaf vertex and

the vertices supplied by its children as follows:

ui = 〈H [vi‖u1‖u2‖ · · · ‖uk]〉

Where ui is an internal vertex created by node i, and hash tree vertices

u1, · · · , uk are received from the children of i (or generated by i itself).

The value vi is the aggregated value computed from the contributions

of the values from each child. Note that different hash functions are

used for the hash tree leaf vertices and the hash tree internal vertices.

This ensures that leaf vertices are properly terminated and an attacker

cannot attempt to “graft” another subtree onto a leaf vertex.

For example, in Figure 5.3, the sensor node A receives internal ver-

tices B1 and C1 and the leaf vertex D0 as well as its own leaf vertex A0.

Node A then creates a new parent vertex by computing a hash over the

computed aggregate vA,1 (which is simple summation in this example)

and A0‖B1‖C1‖D0. The result is a new internal vertex in the hash tree

which is the parent of all the vertices received by A. Once each node i

has computed all its internal hash tree vertices it transmits them to its

parent, which will then construct its own internal vertex as the parent

of all the vertices it receives, and so on. This also occurs at the base

station, which computes the root vertex r of the hash tree.

In general, in the simple topology-following hash tree, a new internal

vertex is added to the hash tree each time an aggregation takes place.

The main limitation of this basic approach is that the commitment

5.4. SDAP: Probing the Hierarchical Hash Tree 37

c = 8

c = 5

c = 7

c = 7

c = 8 c = 5c = 7

c = 7

BS

BS

Fig. 5.4 SDAP Tree Balance via Leader Election.

tree potentially becomes as unbalanced as the network topology; for

example, in a linear topology with n nodes, the communication cost of

probing the farthest leaf is n − 1 (since it is at depth n) and the cost

of probing any node at random is Θ(n).

5.4 SDAP: Probing the Hierarchical Hash Tree

The SDAP algorithm [59] uses a hash tree construction that extends

the basic hash tree construction of Section 5.3. SDAP consists of two

separate algorithms for adapting the commitment structure to a hier-

archical aggregation process.

Balancing the tree via Random Leader Election. SDAP fol-

lows the basic topology-following hash tree construction, with some

differences. SDAP uses Message Authentication Codes (MAC) instead

of a hash function to compute the vertices (this difference has no func-

38 Commitment-based Techniques

tional impact and is omitted from our discussion, as are the particular

message constructions of the protocol). A more important design dis-

tinction is that SDAP breaks the single large hash tree into a number of

smaller subtrees. This decomposition is performed using a form of ran-

dom leader election. In the random leader election, each node self-elects

to become a leader based on a deterministic random process which takes

as inputs the query nonce (N), its ID, and the number of currently un-

grouped nodes in its subtree, c. Specifically, the hash tree is built from

the leaves up as per Section 5.3; however during the construction pro-

cess, a running count of the number of currently ungrouped nodes is

maintained. The running count c is initialized to 1 at the leaves and

added up at each internal node. A node x elects itself as a leader if

H [N‖IDx] < F (c) where F is an increasing function of c. When a

node elects itself as leader, it effectively splits off the subtree rooted at

itself from the main topology; this causes all the nodes in its subtree

to not count towards the number of ungrouped nodes at its parent.

The process thus proceeds up until the root (which is always a group

leader). This process is illustrated in Figure 5.4. Each group leader ef-

fectively communicates directly (using end-to-end authentication) with

the base station by having other nodes forward their messages. The ef-

fect is a hash tree that is somewhat more balanced compared with the

actual network topology.

Value-weighted Probing. Another change that needs to be made

from the single-aggregator case is to enable a probabilistic probe of the

leaf values from the base station without knowledge of the exact topol-

ogy of the hash tree. As a comparison, consider probing a hash tree

leaf at random in SIA: since the base station is informed of the number

of leaves n, it can simply select a number in [1, .., n] and probe that

specific position in the hash tree. For a hash tree of arbitrary topology,

simply noting the index of a node does not indicate the shape or form

of the probe path. This needs to be explicitly determined in a manner

such that nodes which contributed more to the result have a greater

likelihood of being probed. The SDAP probe proceeds as follows: the

base station selects a random probe seed value Sa. It then traverses

the (rebalanced) hash tree from the root in the following way: at each

5.4. SDAP: Probing the Hierarchical Hash Tree 39

BS

12
A B C D

4 10 5

P(A) = 12/31

P(B) = 4/31

P(C) = 10/31

P(D) = 5/31

Total = 31

1st random choice

E F G

4 1 5

P(E) = 4/10

P(F) = 1/10

P(G) = 5/10

2nd random choice
Total = 10

Fig. 5.5 SDAP Value-weighted Probing.

node visited by the probe, if the node corresponds to a leaf sensor node

(it has no children) then the node itself is returned; otherwise, it is an

internal hash tree vertex corresponding to an aggregation operation,

and each child vertex of this vertex represents an input to the aggrega-

tion operation. A child vertex is chosen based on how much that input

contributed to the aggregate value at that node. For example, in prob-

ing the COUNT aggregate, the probability of picking any given child

is proportional to its reported sub-count from its sub-tree. Specifically,

for a set of d children with counts c1, . . . , cd, the parent node computes
∑d

k=1 ck ·H(Sa‖IDk) where H is a hash function which returns a uni-

formly distributed real number between 0, 1. The ith child is picked

for further probing if this value falls between [
∑i−1

k=1 ck,
∑i

k=1 ck]. The

process is then repeated at the selected child until termination. This

process is illustrated in Figure 5.5. This probing algorithm allows the

base station to issue probes based on the relative contribution of each

hash tree vertex; hash tree vertices that add a greater contribution to

the final result are thus more likely to be probed. The same princi-

ples of sampling that were derived in SIA (see Section 5.2) thus carry

over directly, yielding a probabilistic security property: the more the

attacker causes a deviation from the correct result, the more likely it

is for the random probes to detect this inconsistency.

40 Commitment-based Techniques

5.5 SecureDAV: Distributed Verification

SecureDAV [40] is a system for encrypting and authenticating an aggre-

gation result for the single-aggregator case. Since this article only covers

data integrity and not secrecy, we focus on the methods for ensuring in-

tegrity. The SecureDAV scheme assumes that sensor nodes have access

to a threshold signature mechanism. In a threshold signature scheme,

a group of signers G are each preloaded with specially constructed pri-

vate keys, while the designated verifier (in this case, the base station)

holds the group public key. The threshold signature scheme allows any

t members of the group to sign a given message M such that the veri-

fier is assured that at least t members of the group indeed attest to the

authenticity of M . This signature scheme is used in verifying aggrega-

tion integrity as follows. First, the aggregator computes the aggregate

result vr, which is broadcast to all the sensor nodes. The nodes then

inspect the reported aggregate to see if it is consistent with their indi-

vidual readings: for example, if vr is supposed to be an average over a

normally-distributed set of readings, sensors could check if the reported

average is within a certain range (e.g., one prior standard distribution)

of their own reading. In a typical case, this check should pass for a large

number of sensor nodes (i.e., > t with high probability); these nodes

will then compute their respective partial signatures on vr and forward

them to the aggregator. If there are at least t such partial signatures,

then the threshold property is satisfied and the aggregator can then

construct a valid group signature on vr. The base station then only

needs to check a single signature to verify that at least t nodes agreed

on the reported aggregate vr.

The main important design choice in SecureDAV is that this is

the first design we have covered where the verification of the central

global result is fully distributed, i.e., being performed by the sensor

nodes that are contributing data values instead of by the base station.

This technique will be further extended by subsequent schemes, most

notably SHIA [13], which we discuss in the following section.

5.6. Secure Hierarchical In-Network Aggregation 41

5.6 Secure Hierarchical In-Network Aggregation

The resilient estimation techniques of Section 4 yield approximate re-

sults that were fully resistant against tampering; the commitment-

based probabilistic probing techniques of Section 5 yield exact results

but can only detect tampering probabilistically. In this section, we dis-

cuss in detail a variation of the commitment-based approach that yields

both exact results and are also fully resistant against malicious manip-

ulation.

SHIA, or Secure Hierarchical In-network Aggregation is proposed by

by Chan et al. [13]. The basic idea of SHIA is a three-phase protocol:

1) First SHIA builds a commitment tree over the aggregation topology

(in a similar way to SDAP in Section 5.4, but using a different, more

rigorous method of balancing the tree); 2) Subsequently, the commit-

ment tree is then exhaustively probed from the leaves. This is a major

difference from the base-station originated probes of SIA and SDAP;

3) Once the distributed probes are complete, a third phase aggregates

the various confirmations from the network to the base station: if all

the nodes have confirmed that the tree is free of inconsistencies, then

the result is accepted. We now describe the protocol in more detail.

For brevity, we first focus on the SUM aggregate, where the goal is to

compute the total sum of all sensor readings.

Buliding a balanced commitment tree by delayed aggregation.

The SHIA protocol begins with the basic topology-following hash tree

described in Section 5.3 but with a balancing optimization that guar-

antees the generation of a binary hash tree with ⌈log n⌉ height.

In the naive commitment tree, each sensor node always computes

the aggregate sum of all its inputs, which can be considered a strategy

of greedy aggregation. SHIA considers instead the benefit of delayed ag-

gregation at node C1 in Figure 5.3. Suppose that C, instead of greedily

computing the aggregate sum over its own reading (C0) and both its

child nodes E0 and F1, instead computes the sum only over C0 and

E0, and passes F1 directly to A along with C1 = C0 + E0. In such a

commitment tree, F1 becomes a child of A1 (instead of C1), thus re-

ducing the depth of the commitment tree by 1. Delayed aggregation

thus trades off increased communication during the aggregation phase

42 Commitment-based Techniques

in return for a more balanced commitment tree, which results in lower

verification overhead in the result-checking phase.

The strategy for delayed aggregation is as follows: the aggregation

and hash tree construction algorithm proceeds from the leaves to the

root as described in Section 5.3, except that an aggregation operation

(along with the associated commit operation) is performed if and only

if it results in a complete, binary commitment tree.

In the naive commitment tree, each sensor node passes to its parent

a single message containing the label of the root vertex of its com-

mitment subtree Ts. On the other hand, in the delayed aggregation

algorithm in SHIA, each sensor node now passes on the labels of the

root vertices of a set of commitment subtrees F = {T1, . . . , Tq}. We

call this set a commitment forest, and we enforce the condition that

the trees in the forest must be perfect binary trees (i.e., complete bi-

nary trees with 2h leaf vertices where h is the height of the tree) and

no two trees have the same height. These constraints are enforced by

continually combining equal-height trees into perfect binary trees of

greater height. Each combination step corresponds to an intermediate

aggregation step: for example, in the case of SUM, we combine two

subtrees with subsums s1, s2 by creating a new parent vertex over each

of the subtree roots with the new sum s1 + s2.

A commitment forest has at most n leaf vertices (one for each sensor

node included in the forest, up to a maximum of n). Since all the

trees are perfect binary trees, the tallest tree in any commitment forest

has height at most log n. Moreover, because there are no two trees of

the same height, any commitment forest has at most log n trees. To

facilitate the construction of perfect binary trees in the forest, we add

an additional field into the hash tree construction to keep track of the

height of each hash subtree.

Figure 5.6 shows an example of the commitment-tree construction

process for node A based on the topology in Figure 5.3. The algorithm

terminates in O(q log n) steps since each step reduces the number of

trees in the forest by one, and there are at most q log n + 1 trees in the

forest. Hence, each sensor node creates at most q log n+1 = O(∆ log n)

vertices in the commitment forest.

When F is a valid commitment forest, s sends the root vertices of

5.6. Secure Hierarchical In-Network Aggregation 43

A0 = 〈1, IDA, rA, MACKA
〉

D0 = 〈1, IDD, rD, MACKD
〉

K0 = 〈1, IDk, rK , MACKK
〉

C2 = 〈4, vC2
, H [N ||4||vC2

||F1||C1]〉

B1 = 〈2, vB1
, H [N ||2||vB1

||B0||J0]〉

(a) Inputs: A generates A0, and receives D0 from D, C2 from C, and (B1, K0) from B. Each dashed-
line box shows the commitment forest received from a given sensor node. The solid-line box shows the

vertex labels, each solid-line box below shows the labels of the new vertices.

vA1
= aA + aD

A1 = 〈2, vA1
, H [N ||2||vA1

||A0||D0]〉

(b) First merge: Vertex A1 created

vA2
= vA1

+ vB1

A2 = 〈4, vA2
, H [N ||4||vA2

||A1||B1]〉

(c) Second merge: Vertex A2 created

vA3
= vA2

+ vC2

A3 = 〈8, vA3
, H [N ||8||vA3

||A2||C2]〉

(d) Final merge: Vertex A3 created. A3 and K0 are sent to the parent of A in the aggregation tree.

Fig. 5.6 Process of node A (in the topology from Figure 2.2) deriving its commitment forest
from the commitment forests received from its children.

each tree in F to its parent sensor node in the aggregation tree. The

sensor node s also keeps track of every vertex that it created, as well

as all the inputs that it received (i.e., the labels of the root vertices of

the commitment forests that were sent to s by its children). This takes

O(d log n) memory per sensor node.

Note that there are at most log n commitment trees in each of the

44 Commitment-based Techniques

forests presented by any sensor node to its parent, the per-node commu-

nication cost for constructing the final forest is O(log n). Furthermore,

no path in the forest is longer than log n hops. This will eventually en-

able us to prove a bound of O(log2 n) edge congestion for SHIA. This

bound can be further improved to O(log n) by ensuring that all the

vertices generated by a given sensor node lie on the same path to the

root [23].

Distributed probing. Once the hash tree has been computed, the

base station authentically broadcasts the hash tree root, and each sen-

sor node disseminates the path to the root down to all of its children:

eventually every sensor node will have the verification path in the hash

tree from its leaf vertex up to the authenticated root vertex. Since

the tree is balanced, this process also takes no more than O(log2 n)

congestion. Using this verification path, each sensor node can then ver-

ify that all the aggregation subcomputations involving its contributed

value have been computed correctly: specifically, for the SUM oper-

ation, each subaggregate value should be the correct sum of all the

inputs to that vertex, and none of the inputs should be negative.

Confirmation aggregation. After each sensor node s has success-

fully performed the verification step for its leaf vertex us, it sends an

authentication code to the querier. The authentication code for sensor

node s is MACKs(N ||OK) where OK is a unique message identifier

and Ks is the key that s shares with the querier. Each authentication

code should be only computed once per value of N (e.g. N could be

a sequence number that does not wrap around for the duration of the

network). The collation of the authentication codes proceeds as follows

(note that we are referring to the aggregation tree at this point, not

the commitment tree). Leaf sensor nodes in the aggregation tree first

send their authentication codes to their parents in the aggregation tree.

Once an internal sensor node has received authentication codes from all

its children, it computes the XOR of its own authentication code with

all the received codes, and forwards it to its parent. At the end of the

process, the querier will receive a single authentication code from the

base station that consists of the XOR of all the authentication codes

received in the network.

5.6. Secure Hierarchical In-Network Aggregation 45

Since the querier knows the key Ks for each sensor node s, it verifies

that every sensor node has released its authentication code by comput-

ing the XOR of the authentication codes for all the sensor nodes in the

network:

MACK1
(N ||OK) ⊕ · · · ⊕ MACKn(N ||OK)

The querier then compares the computed authenticator with the re-

ceived authenticator. If the two authenticators match, then the querier

accepts the aggregation result. Otherwise, the querier rejects the re-

sult. A rejection may indicate the presence of the adversary in some

unknown nodes in the network, or it may be due to natural factors

such as node death or message loss. The querier may either retry the

query (with a new nonce) or attempt to determine the cause of the

rejection. For example, it could directly request the leaf values of every

sensor node: if rejections due to natural causes are sufficiently rare,

the high cost of this direct query is incurred infrequently and can be

amortized over the other successful queries. In normal operation, the

total congestion for the basic SHIA algorithm is O(log2 n). The algo-

rithm as described enables the querier to ensure a lower bound for

the reported aggregate, i.e., the reported aggregate is no less than the

total of the readings of the legitimate nodes. If the total number of

nodes n is known, then a corresponding upper bound can be enforced

by computing the complement of the aggregate: the aggregate and its

complement should always sum to a fixed value dependent only on n.

It may appear surprising that a number of independent piece-meal

verifications can directly compose to ensure that the overall aggregate

is secure. A rigorous analysis is provided in the original paper [13]; here

we provide a rough intuition of the security mechanics. Essentially, the

cryptographic commitment properties of the hash tree ensure that the

structure of the computations is “locked down”: when the base station

broadcasts the authentic root vertex value r, the adversary is unable

to construct more than one version of a hash tree that hashes to that

root value r. The fact that the hash tree is fixed ensures that each

leaf vertex has a unique, consistent path to the root; the individual

self-verifications then ensure that these computation paths of each le-

gitimate node to the root consist only of correct aggregation operations.

46 Commitment-based Techniques

As a result, the adversary is unable to perform aggregate miscomputa-

tion attacks anywhere along a computation path that has a legitimate

sensor node’s value as a leaf: it is thus functionally restricted to only

falsifying the values coming from the nodes that it controls.

5.7 Summary and Discussion

The common design element in all commitment-based techniques is to

construct an “audit structure” over the inputs and computations of the

aggregation. This structure is then probed (usually probabilistically)

for consistency. To support this, the audit structure must provide two

properties. Firstly, any malicious tampering with the aggregate compu-

tation must cause a detectable change in the audit structure; secondly,

the audit structure should not be malleable in such a way that this

change can be hidden from the auditors. A secondary concern is that

the audit process itself is comparable in efficiency to the aggregation

process. Cryptographic hash trees are excellent structures for provid-

ing the properties of sensitivity to input and non-malleability, as well

as supporting efficient probing, and hence they are often the building-

blocks of choice in designing these commitment-based algorithms.

The primary advantage of commitment-based techniques is that

they support the reporting of a precise (not estimated or probabilistic)

aggregate value that is bound tightly to a structure that can be used

for verification. Specifically, the tight binding allows us to detect that

if a discrepancy occurs, it must necessarily be due to malicious tamper-

ing (this is in contrast with resilient estimators, where an estimation

could deviate from the true aggregate simply due to natural errors).

The converse also holds: we can show that if any malicious tamper-

ing has taken place then the the hash tree must necessarily reflect this

inconsistency somewhere.

The primary limitation of commitment-based schemes is thus in de-

tecting and locating these inconsistencies. It is not hard to see that a

“full map” of all inconsistencies in the hash structure would negate the

usefulness of aggregation in terms of requiring communication over-

head at least linear in the size of the network. To work around this,

the algorithms in this class of schemes thus must use either probabilis-

5.8. References and Further Reading 47

Secure aggregation protocols

Resilient Estimation Techniques Commitment-based Techniques

approximate result exact result

guaranteed detection either: (a) probabilistic detection

resilient vs DoS or: (b) less resilient vs DoS

can be made one pass usually multiple rounds
Table 5.1 Comparison of two general approaches for secure aggregation.

tic probing (SIA, SDAP) or distributed probing (SHIA, SecureDAV).

Probabilistic probing schemes yield only probabilistic security proper-

ties, with security being a function of the amount of communication

overhead invested into probing the audit structure. Distributed probing

is excellent in terms of both providing full result precision and a guar-

anteed (optimal) security bound on the extent of undetected malicious

interference; however a significant drawback is that a single round of

distributed probing generally is unable to efficiently locate the exact

source of any malicious tampering: due to this, such protocols are gen-

erally susceptible to denial-of-service attacks where a malicious node

can cause aggregate reports to repeatedly fail while retaining relative

anonymity. Table 5.1 summarizes the comparison between resilient es-

timation and commitment-based techniques.

5.8 References and Further Reading

Commitment-based secure aggregation was introduced in the SIA

framework by Przydatek et al. [12,49]. Besides the method for Median

that was discussed in this article, the framework also contains algo-

rithms for various other measures such as Count, Count Distinct, and

Sum. SDAP was proposed by Yang et al. [59]. In addition to the basic

framework for hash tree construction and probing, the paper also con-

tains a description of a technique for increasing the probing probability

for groups that are detected as outliers in the data set. SecureDAV is

due to Mahimkar and Rappaport [40]. The SHIA algorithm is due to

Chan et al. [13]. Frikken and Dougherty extend this scheme with a

technique for rearranging the hash tree such that all vertices belonging

48 Commitment-based Techniques

to a given sensor node share the same path to the root of the hash tree:

this improves the communication congestion to O(log n) [23]. Manulis

and Schwenk formally proved the cryptographic security of this algo-

rithm [44]. Taban and Gligor [55] improve the resilience of the algorithm

with an algorithm for identifying the specific nodes that are malicious.

Chan et al. also further extend the principles of the framework to pro-

vide security for not just aggregation computations but also general

communications primitives like broadcast authentication and node-to-

node signatures [11].

5.9 Conclusion

We present an overview of general approaches for secure aggregation

computations in distributed networks. We have focused primarily on al-

gorithmic design rather than proof techniques. As distributed systems

continue to scale up and become more pervasive, secure distributed

computation techniques will become increasingly important. It is our

hope that the techniques and discussion presented in this article will

help both practitioners and researchers map the design space in the

development of new and more resilient algorithms for distributed com-

puting in security-critical distributed systems.

References

[1] Daniel J. Abadi, Samuel Madden, and Wolfgang Lindner. Reed: robust, efficient
filtering and event detection in sensor networks. In Proceedings of international
conference on Very Large Data Bases (VLDB), 2005.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approx-
imating the frequency moments. Journal of Computer and System Sciences,
58(1):137–147, 1999.

[3] Ross Anderson, Francesco Bergadano, Bruno Crispo, Jong-Hyeon Lee, Char-
alampos Manifavas, and Roger Needham. A new family of authentication pro-
tocols. ACM SIGOPS Operating Systems Review, 32(4):9–20, 1998.

[4] Benjamin Arai, Gautam Das, Dimitrios Gunopulos, and Vana Kalogeraki. Ef-
ficient approximate query processing in peer-to-peer networks. IEEE Transac-
tions on Knowledge and Data Engineering, 19(7):919–933, 2007.

[5] Brian Babcock, Surajit Chaudhuri, and Gautam Das. Dynamic sample se-
lection for approximate query processing. In Proceedings of ACM SIGMOD,
2003.

[6] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan.
Counting distinct elements in a data stream. In Proceedings of International
Workshop on Randomization and Approximation Techniques, 2002.

[7] V. Barnet and T. Lewis. Outliers in statistical data. John Wiley and Sons,
Inc., 1994.

[8] Joel Branch, Boleslaw Szymanski, Chris Giannella, Ran Wolff, and Hillol Kar-
gupta. In-network outlier detection in wireless sensor networks. In Proceedings
of International Conference on Distributed Computing Systems (ICDCS), 2006.

[9] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient aggregation of encrypted
data in wireless sensor networks. In Proceedings of MobiQuitous, 2005.

49

50 References

[10] Hasan Çam, Suat Özdemir, Prashant Nair, Devasenapathy Muthuavinashiap-
pan, and H. Ozgur Sanli. Energy-efficient secure pattern based data aggregation
for wireless sensor networks. Computer Communications, 29(4):446–455, 2006.

[11] Haowen Chan and Adrian Perrig. Efficient security primitives derived from a
secure aggregation algorithm. In Proceedings of ACM Conference on Computer
and Communications Security (CCS), 2008.

[12] Haowen Chan, Adrian Perrig, Bartosz Przydatek, and Dawn Song. SIA: secure
information aggregation in sensor networks. Journal of Computer Security,
15(1):69–102, 2007.

[13] Haowen Chan, Adrian Perrig, and Dawn Xiaodong Song. Secure hierarchical
in-network aggregation in sensor networks. In Proceedings of ACM Conference
on Computer and Communications Security (CCS), 2006.

[14] Jeffrey Considine, Feifei Li, George Kollios, and John W. Byers. Approximate
aggregation techniques for sensor databases. In Proceedings of IEEE Interna-
tional Conference on Data Engineering (ICDE), 2004.

[15] Graham Cormode, Minos N. Garofalakis, S. Muthukrishnan, and Rajeev Ras-
togi. Holistic aggregates in a networked world: Distributed tracking of approx-
imate quantiles. In Proceedings of ACM SIGMOD, 2005.

[16] Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data
streams. In Proceedings of international conference on Very Large Data Bases
(VLDB), 2008.

[17] Graham Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005.

[18] Emiliano De Cristofaro, Jens-Matthias Bohli, and Dirk Westhoff. FAIR: fuzzy-
based aggregation providing in-network resilience for real-time wireless sensor
networks. In Proceedings of ACM conference on Wireless network security
(WiSec), 2009.

[19] Josep Domingo-Ferrer. A provably secure additive and multiplicative privacy
homomorphism. In Proceedings of International Conference on Information
Security, 2002.

[20] Wenliang Du, Jing Deng, Yunghsiang Han, and Pramod K. Varshney. A
witness-based approach for data fusion assurance in wireless sensor networks.
In Proceedings of IEEE Global Telecommunications Conference, 2003.

[21] Cristian Estan and George Varghese. New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice. ACM Transactions
on Computer Systems (TOCS), 21(3):270–313, 2003.

[22] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for
data base applications. Journal of Computer and System Sciences, 31(2):182–
209, 1985.

[23] Keith B. Frikken and Joseph A. Dougherty. An efficient integrity-preserving
scheme for hierarchical sensor aggregation. In Proceedings of ACM conference
on Wireless network security (WiSec), 2008.

[24] Saurabh Ganeriwal, Laura K. Balzano, and Mani B. Srivastava. Reputation-
based framework for high integrity sensor networks. ACM Transactions on
Sensor Networks (TOSN), 4(3):1–37, 2008.

References 51

[25] M. Garofalakis, J.M. Hellerstein, and P. Maniatis. Proof sketches: Verifiable
In-Network aggregation. In Proceedings of IEEE International Conference on
Data Engineering (ICDE), 2007.

[26] Phillip B. Gibbons. Distinct sampling for highly-accurate answers to distinct
values queries and event reports. In Proceedings of international conference on
Very Large Data Bases (VLDB), 2001.

[27] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of
quantile summaries. In Proceedings of ACM SIGMOD, 2001.

[28] Michael Greenwald and Sanjeev Khanna. Power-conserving computation of
order-statistics over sensor networks. In Proceedings of PODS, 2004.

[29] Sudipto Guha and Andrew McGregor. Approximate quantiles and the order of
the stream. In Proceedings of PODS, 2006.

[30] Carl Hartung, James Balasalle, and Richard Han. Node compromise in sensor
networks: The need for secure systems. Technical Report Technical Report CU-
CS-990-05, Department of Computer Science, University of Colorado, January
2005.

[31] Wenbo He, Xue Liu, Hoang Nguyen, Klara Nahrstedt, and Tarek F. Abdelza-
her. PDA: Privacy-preserving data aggregation in wireless sensor networks. In
Proceedings of IEEE INFOCOM, 2007.

[32] Lingxuan Hu and D. Evans. Secure aggregation for wireless networks. In
Proceedings of Symposium on Applications and the Internet Workshops, 2003.

[33] Peter J. Huber. Robust statistics. Wiley, 1981.
[34] Ryan Huebsch, Brent N. Chun, Joseph M. Hellerstein, Boon Thau Loo, Pet-

ros Maniatis, Timothy Roscoe, Scott Shenker, Ion Stoica, and Aydan R.
Yumerefendi. The architecture of PIER: an internet-scale query processor. In
Proceedings of Conference on Innovative Data Systems Research (CIDR, 2005.

[35] Pawan Jadia and Anish Mathuria. Efficient secure aggregation in sensor net-
works. In Proceedings of International Conference on High Performance Com-
puting, 2004.

[36] Yee Wei Law, Jeroen Doumen, and Pieter Hartel. Survey and benchmark
of block ciphers for wireless sensor networks. ACM Transactions on Sensor
Networks (TOSN), 2(1):65–93, 2006.

[37] Donggang Liu and Peng Ning. Multilevel µTESLA: Broadcast authentication
for distributed sensor networks. ACM Transactions on Embedded Computing
Systems (TECS), 3(4):800–836, 2004.

[38] Christian Lochert, Björn Scheuermann, and Martin Mauve. Probabilistic ag-
gregation for data dissemination in vanets. In Proceedings of ACM international
workshop on Vehicular ad hoc networks (VANET), 2007.

[39] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
TAG: A tiny aggregation service for ad-hoc sensor networks. In Proceed-
ings of USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2002.

[40] A. Mahimkar and T. S. Rappaport. SecureDAV: a secure data aggregation
and verification protocol for sensor networks. In Proceedings of IEEE Global
Telecommunications Conference, 2004.

52 References

[41] Amit Manjhi, Suman Nath, and Phillip B. Gibbons. Tributaries and deltas:
efficient and robust aggregation in sensor network streams. In Proceedings of
ACM SIGMOD, 2005.

[42] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts
over data streams. In Proceedings of international conference on Very Large
Data Bases (VLDB), 2002.

[43] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approx-
imate medians and other quantiles in one pass and with limited memory. In
Proceedings of ACM SIGMOD, 1998.

[44] Mark Manulis and Jorg Schwenk. Provably secure framework for information
aggregation in sensor networks. In Proceedings of the International Conference
on Computational Science and Its Applications, 2007.

[45] Ralph C. Merkle. A digital signature based on a conventional encryption func-
tion. In Proceedings of CRYPTO, 1987.

[46] Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Anderson.
Synopsis diffusion for robust aggregation in sensor networks. ACM Transactions
on Sensor Networks (TOSN), 4(2):7:1–7:40, 2008.

[47] Adrian Perrig, J. D. Tygar, Dawn Song, and Ran Canetti. Efficient authenti-
cation and signing of multicast streams over lossy channels. In Proceedings of
IEEE Symposium on Security and Privacy, 2000.

[48] Fabio Picconi, Nishkam Ravi, Marco Gruteser, and Liviu Iftode. Probabilistic
validation of aggregated data in vehicular ad-hoc networks. In Proceedings of
ACM international workshop on Vehicular ad hoc networks (VANET), 2006.

[49] Bartosz Przydatek, Dawn Xiaodong Song, and Adrian Perrig. SIA: secure
information aggregation in sensor networks. In Proceedings of ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2003.

[50] Rodrigo Roman, Cristina Alcaraz, and Javier Lopez. A survey of crypto-
graphic primitives and implementations for hardware-constrained sensor net-
work nodes. Mobile Networks and Applications, 12(4):231–244, 2007.

[51] Sankardas Roy, Sanjeev Setia, and Sushil Jajodia. Attack-resilient hierarchical
data aggregation in sensor networks. In Proceedings of ACM workshop on
Security of Ad Hoc and Sensor Networks (SASN), 2006.

[52] Bo Sheng, Qun Li, Weizhen Mao, and Wen Jin. Outlier detection in sensor
networks. In Proceedings of ACM MobiHoc, 2007.

[53] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Sub-
hash Suri. Medians and beyond: new aggregation techniques for sensor net-
works. In Proceedings of ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2004.

[54] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and D. Gunop-
ulos. Online outlier detection in sensor data using non-parametric models. In
Proceedings of international conference on Very Large Data Bases (VLDB),
2006.

[55] Gelareh Taban and Virgil D. Gligor. Efficient handling of adversary attacks in
aggregation applications. In Proceedings of ESORICS, 2008.

[56] David Wagner. Resilient aggregation in sensor networks. In Proceedings of
ACM workshop on Security of Ad Hoc and Sensor Networks (SASN), 2004.

References 53

[57] Dirk Westhoff, Joao Girão, and Mithun Acharya. Concealed data aggregation
for reverse multicast traffic in sensor networks: Encryption, key distribution,
and routing adaptation. IEEE Transactions on Mobile Computing, 5(10):1417–
1431, 2006.

[58] Praveen Yalagandula and Michael Dahlin. A scalable distributed information
management system. In Proceedings of ACM SIGCOMM, pages 379–390, 2004.

[59] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. SDAP: a secure hop-
by-hop data aggregation protocol for sensor networks. In Proceedings of ACM
MobiHoc, 2006.

[60] Haifeng Yu. Secure and highly-available aggregation queries in large-scale sen-
sor networks via set sampling. In Proceedings of International Conference on
Information Processing in Sensor Networks, 2009.

[61] Ying Zhang, Xuemin Lin, Yidong Yuan, Masaru Kitsuregawa, Xiaofang Zhou,
and Jeffrey Xu Yu. Summarizing order statistics over data streams with dupli-
cates. In Proceedings of IEEE International Conference on Data Engineering
(ICDE), 2007.

