
Establishing Software-Only Root of Trust
on Embedded Systems: Facts and Fiction

Yanlin Li1, Yueqiang Cheng1, Virgil Gligor1(B), and Adrian Perrig2

1 CyLab, Carnegie Mellon University, Pittsburgh, PA, USA
gligor@cmu.edu

2 Computer Science Department, ETH Zurich, Zürich, Switzerland

Abstract. Establishing SoftWare-Only Root of Trust (SWORT) on a
system comprises the attestation of the system’s malware-free state and
loading of an authentic trusted-code image in that state, without allow-
ing exploitable time gaps between the attestation, authenticity measure-
ment, and load operations. In this paper, we present facts and fiction of
SWORT protocol design on new embedded-systems architectures, dis-
cuss some previously unknown pitfalls of software-based attestation, and
propose three new attacks. We describe the implementation of the first
attack on a popular embedded-system platform (i.e., on the Gumstix
FireStorm COM), establish the feasibility of the second, and argue the
practicality of the third. We outline several challenges of attack coun-
termeasures and argue that countermeasures must compose to achieve
SWORT protocol security.

1 Introduction

An adversary who can insert malware into a system poses a persistent threat. Mal-
ware can survive across repeated boot operations and can be remotely activated
at the adversary’s discretion. Attempts to detect persistent malware in a system
usually require off-line forensic analysis and hence do not offer timely recourse
after a successful attack. In contrast, on-line detection of adversary presence in a
system can be fast (i.e., a matter of minutes), but typically requires some form
of hardware- or software-based attestation by an external device that the system
state (e.g., RAM, CPU and I/O registers, device-controller memory) is malware-
free. Attestation of malware freedom is particularly important in establishing
SoftWare-Only Root of Trust (SWORT) since the loading of a trusted-code image
in the presence of malware would compromise trust assurances.

When strong guarantees are sought in attestation despite malware presence,
designers usually rely on secrets protected in tamper-resistant hardware and
standard cryptography; e.g., the private keys of a Trusted Platform Module
(TPM) [29]. In contrast, SoftWare-based ATTestation (SWATT) aims to avoid
management of secret keys and their protection in hardware. Nevertheless, some
SWATT approaches that attempt to provide security assurance still use some
secrets. For example, early research suggests that, to obtain guarantees of un-
tampered code execution on an adversary-controlled machine, one should use
c© Springer International Publishing Switzerland 2015
B. Christianson et al. (Eds.): Security Protocols 2015, LNCS 9379, pp. 50–68, 2015.
DOI: 10.1007/978-3-319-26096-9 7



Establishing Software-Only Root of Trust 51

software agents that encapsulate hidden random addresses at which the check-
sum execution is initiated [7,14]. Other work requires the use of obfuscated check-
sum code [17,24]. More recent research shows that if a remote system can be
initialized to a large enough secret, malware cannot leak much of the secret before
it is changed by a remote verifier, and malware-free code can be loaded on that
system [32].

Facts and Fiction. Although tempting, attestation based on secrets is fraught
with risk when performed in the presence of a skillful and persistent adversary.
Hardware-protected private keys can still be successfully attacked by exploiting
compelled/stolen/forged certificates corresponding to these keys [11,19], side
channels [30], and padding oracles [3]. Equally important, managing hardware-
based attestation (e.g., TPM-based) poses significant usability challenges; e.g.,
the Cukoo attack [18]. Using a software-protected secret (e.g., checksum obfusca-
tion technique) is particularly dangerous since the secret may be implicitly used
for verifying millions of user machines and its discovery may affect many sensitive
applications. Annoyingly, secrets can be subpoenaed by oppressive authorities
leading to loss of privacy precisely where one needs it most; i.e., in censored com-
puting environments. Hence, attestation based on secrets combines facts, such
as the strong cryptographic guarantees available for trusted-image authenticity,
with fiction; e.g., long-term protection of secrets can be assured despite advanced
persistent threats.

In contrast, traditional SWATT protocols [2,14,20–23] do not need secrets for
SWORT establishment. These protocols use external system verifiers, which are
assumed to be free of malware, to challenge adversary-controlled systems with
the execution of checksum functions whose output is verified and execution time
is measured. Hence, these protocols must assure that their checksum functions
have accurately measurable execution-time bounds. Inaccurate verifier measure-
ments would allow an adversary to exploit the time gap between the verifier’s
expected measurements and the adversary’s lower actual execution time.

In practice, however, accurate measurements of checksum execution times are
more fiction than fact. For example, to avoid numerous false alarms on realistic sys-
tem configurations, a verifier’s attack-detection threshold must be extended past
the average execution-time measurement to account for a checksum’s execution-
time jitter. This includes clock variation due to static skew and dynamic (e.g.,
peak-to-peak) jitter, each of which can easily extend a processor’s clock period by
3–8% [27], and execution-time jitter due to hard-to-predict Translation Lookaside
Buffer (TLB) and cache behavior. Since threshold extensions can lead to success-
ful attacks, previous SWATT approaches set low values for them; e.g., less than
1.7% over the average execution time in the no-attack mode of operation in [14,22].
However, low values will cause false-positive malware detection on new embedded-
system platforms, which SWATT aims to avoid1. Extending the threshold
1 Repeating the SWATT protocol only a half a dozen times to identify and disregard

false positives would be unrealistic for embedded-system platforms such as the Gum-
stix FireStorm Com where a single checksum execution takes about thirteen minutes;
viz., Sect. 4.1.



52 Y. Li et al.

to only 3% over the average execution time to avoid false positives would certainly
introduce added vulnerabilities (viz., Sect. 3.2), and thus SWATT would have to
counter new attacks on these platforms.

Furthermore, modern embedded platforms have became increasingly com-
plex and diverse. Thus the belief that a traditional checksum designs (reviewed
in Sect. 6), perhaps with provable properties [2], will suffice for different archi-
tectures and scale is based on more fiction than fact.

An additional fact, which is sometimes ignored by past research, is that
SWATT must be uninterruptably linked to other functions to be useful in
SWORT. Otherwise, SWORT becomes pure fiction: an adversary could pre-plan
unpleasant surprises for a verifier after successful SWATT and before system
boot. For example, the adversary could violate the authenticity of the trusted
image by returning a correct image-integrity measurement and yet load an
adversary-modified image in a malware-free state; viz., Sect. 3.1. This type of
attack is enabled by hardware features on modern embedded platforms that
enable attackers to create a time gap between SWATT and authenticity mea-
surement of the loaded image.

Contributions. In this paper, we show that the new embedded system archi-
tectures pose significant challenges to software-only root of trust (SWORT)
protocols by enabling new attacks launched primarily against software-based
attestation (SWATT). In particular, we make the following three contributions.

1. We present new architecture features of embedded system platforms that pose
heretofore unexpected challenges to traditional SWATT protocols and their
use in SWORT.

2. We define three new attacks against SWORT protocols that are enabled by
both new architecture features (e.g., future-posted events, L1 caches relying
on software-only coherence mechanisms) and scalability considerations (e.g.,
jitter caused by caches during randomized memory walks, clock jitter) on
embedded platforms.

3. We present the implementation of the first attack on a popular embedded-
system platform (i.e., on the Gumstix FireStorm COM), establish the feasibil-
ity of the second, and argue the practicality of the third. We outline several
challenges of attack countermeasures, find dependencies among them, and
argue that these must compose to achieve SWORT protocol security.

Organization. The remainder of this paper is organized as follows: Sect. 2 provides
a brief overview of typical SWORT protocols and known attacks against SWATT
designs. Three new attacks against SWORT protocols on modern embedded plat-
forms are described in Sect. 3. Section 4 establishes the feasibility of these attacks,
and Sect. 5 illustrates the challenges of effective countermeasures for these attacks.
We describe related work in Sect. 6, and present our conclusions in Sect. 7.



Establishing Software-Only Root of Trust 53

2 Software-Only Root of Trust

A SoftWare-Only Root of Trust (SWORT) protocol comprises three distinct
steps: (1) the establishment of an untampered execution environment (aka. a
malware-free system state) via SoftWare-Based ATTestation (SWATT), (2) the
verification of trusted-image authenticity, and (3) the loading of the authen-
tic image onto the malware-free state, without allowing exploitable time gaps
between the three steps.

2.1 Architecture and Protocol

In SWORT, a verifier program runs on a trusted machine and performs SWATT on
a prover device using a nonce-response protocol; viz., Steps 1 – 2 of Fig. 1. The ver-
ifier program comprises a checksum simulator, a timer, and a cryptographic hash
function. The checksum simulator generates pseudo-random nonces for attesta-
tion, constructs a copy of the device memory contents, and computes the expected
response (i.e., checksum result) by simulating the checksum computation on the
prover device. The timer measures the elapsed time of the nonce-response recep-
tion. An authentic, trusted code image (i.e., a correct, malware-free device image)
is available on the verifier machine, and the hash function is used to compute its
digest for the integrity measurement of the device image.

On the prover device, a prover program is installed and includes a checksum
function, a communication function, a hash function, and other functions, such as
those of the boot code. The checksum function disables interrupts on the device,
resets systemconfigurations to a known state, computes a checksumover the prover
programand other criticalmemory contents (e.g., page table, stack, exception han-
dler table, and communication buffer), and establishes an untampered execution

Prover DeviceVeri er Machine

Veri er Program

Checksum 
Simulator

Trusted
Image

Timer

Hash Function

1. Install prover code
& initialize device

Checksum Function

Device
 image

Communication
Function

Prover Program

2. Nonce-response

3. Hash(Device image)

4. If Hash(Device image) is 
incorrect, load 

Trusted Image onto
prover device

Hash Function

Other Functions

Fig. 1. SWORT system architecture and verification protocol.



54 Y. Li et al.

environment for the device image. The checksum function must be designed such
that modifications of its code or additions of malware instruction would invalidate
the checksum result or cause a detectable computation overhead.

The verifier program checks the validity of the prover’s response (i.e., the
checksum result) and the elapsed time of the nonce-response pair. If the check-
sum result is correct and the measured time is within a detection threshold, the
verifier program obtains the guarantee that an untampered execution environ-
ment has been established on the prover device, and subsequent results sent by
the prover device are obtained in a malware-free state and are trusted. Please
note that SWORT assumes that attackers cannot physically change the hardware
configuration of the prover device, such as adding additional memory, replacing
the device’s CPU with a faster CPU or over-clocking the device’s CPU frequency.
In addition, the SWATT component (i.e., Steps 1 – 2 of Fig. 1) of the SWORT
protocol assumes that attackers cannot optimize the checksum function to run
it faster or find an alternative algorithm to compute the result faster.

After sending the checksum result to the verifier program, the checksum
function calls a hash function to compute an integrity measurement (i.e., cryp-
tographic hash) of the entire device image and sends the measurement to the
verifier program. The verifier program checks the integrity of the device image,
and if the device image has been changed, the verifier program loads the authen-
tic, trusted image onto the prover device. Subsequent loading of this image in the
malware-free memory state establishes the root of trust on the prover device2.

In SWATT, the checksum function can also fill the spare memory space with
pseudo-random values and then compute a checksum over the entire memory
contents (instead of only over the prover program and other critical memory
contents). In this way, the verifier program can prevent attackers from using the
spare memory space on the prover device to perform malicious operations.

2.2 Known Attacks Against SWATT

In the absence of a concrete formal analysis method to evaluate SWATT designs
on modern commodity systems (viz., Sect. 6), it is instructive to review the
known attacks that must be countered by practical protocols. Several classes of
attacks against the SWATT protocol (i.e., Steps 1 – 2 of Fig. 1) have been pro-
posed in the past; i.e., the memory-substitution (aka. memory-copy) attacks [22],
proxy attacks [22], split-TLB attacks [31], memory-compression attacks [4], and
return-oriented programming attacks [4].

In a memory-substitution attack, an adversary runs a modified checksum
function in the correct location and saves a correct copy of the original check-
sum function in spare memory. During the checksum computation, the modified
checksum function checks every memory address to read and redirects the mem-
ory read to the correct copy when the modified memory contents are read. Two
2 We assume that other SWATT techniques, such as the ones in VIPER [16] are

employed to assure malware-free state of I/O device controllers, including NICs,
GPUs, and disk, keyboard, and printer controllers.



Establishing Software-Only Root of Trust 55

types of such attacks have been identified in the past. In the first type, attack-
ers run a modified checksum function at the correct memory location, and save
a correct copy of the original checksum function in spare memory space. Dur-
ing the checksum computation, the malicious checksum function computes the
checksum over the correct copy. In the second type, attackers load the original
checksum function to the correct memory location, but run a malicious check-
sum function in another memory location that computes the checksum over the
original copy. To defend against these attacks, the Program Counter (PC) and
Data Pointer (DP) values (the memory address to read) are incorporated into
the checksum computation. Thus, the malicious checksum function has to forge
both the correct PC and DP values to compute the expected checksum, thereby
causing a computation overhead.

In a proxy attack, the prover device asks a remote faster computer (a proxy)
to compute the expected checksum. The proxy attack can be detected if the user
monitors all the communication channels of the prover device. For example, the
user can use a Radio Frequency analyzer (e.g., RF-Analyzer HF35C) to detect
any wireless communications of the prover device, thus detecting wireless proxy
attacks.

In a split-TLB attack, an adversary configures the Instruction Translation
Lookaside Buffer (I-TLB) and the Data Translation Lookaside Buffer (D-TLB)
such that the entries for the checksum function memory pages point to different
physical addresses in the I-TLB and the D-TLB. Thus, the adversary can exe-
cute a malicious checksum function, but compute the checksum over the correct
copy of the checksum code. However, the adversary must guarantee that the
carefully configured entries in the D-TLB and the I-TLB are preserved during
the checksum computation.

When the checksum function fills the spare memory space with pseudo-
random values and computes a checksum over the entire memory contents,
attackers cannot find the free memory space for a memory-copy or memory-
substitution attack or a split-TLB attack. In this case, attackers might be able
to perform a memory-compression attack whereby a malicious checksum com-
presses the memory contents of the prover program (to get spare memory space),
and then decompress the compressed content to get the expected value when the
compressed memory content is checksumed.

In a return-oriented programming attack, an adversary modifies the stack
contents to break the control flow integrity of the prover program. Because the
stack contents are incorporated into the checksum, the adversary has to perform
additional operations (e.g., a memory-copy attack) to compute the expected
checksum result.

3 New Attacks Against the SWORT Protocol

New attacks against the SWORT protocol include those that create and exploit
timing gaps between correct execution of SWATT and subsequent integrity mea-
surements; i.e., between the correct completion of Step 2 and the execution of



56 Y. Li et al.

Step 3 in Fig. 1. New attacks also include those that exploit vulnerabilities of
traditional SWATT introduced by new architecture features of embedded-system
platforms. The balance of this section illustrates both types of new attacks.

3.1 Future-Posted Event Attacks

Some modern embedded-system platforms allow the configuration of future-
posted events. These events can be set during system configuration (e.g., during
Step 1 of Fig. 1) and trigger at a future time when the system runs (e.g., after
Step 2 of Fig. 1). Leveraging the future-posted events, attackers can create a tim-
ing gap between the SWATT steps and subsequent integrity measurements. An
example of such an event is the future-posted Watch-Dog Timer (WDT) reset.
Other examples include the future-posted DMA transfers.

On some embedded platforms, attackers can configure the WDT to reset the
device after a specific timer period. For example, on TI DM3730-based platforms,
the CPU [28] supports the future-posted WDT reset, and the specific time period
to reset the device can be configured as between about 62.5µs and 74 h and
56 min. As a result, attackers can perform future-posted WDT reset attacks.

Figure 2 shows the timeline of this attack. Suppose that malware controls
the platform during the installation of the prover code (i.e., Step 1 of Fig. 1)
and configures the WDT to reset the device after the correct checksum result is
sent to the verifier program; i.e., after Step 2 of Fig. 1. Then the malware erases
itself from memory and invokes the prover program. During the SWATT steps,
the prover program calls the checksum function to compute a checksum over
the memory contents based on the nonce from the verifier program, and then
sends the correct checksum result to the verifier program. After the checksum
result is sent, the WDT reset event is triggered and the platform boots from an
adversary-modified device image. After reboot, the malware of the device image
controls the platform and sends a forged hash result (i.e., integrity measurement
of the device image) to the verifier program.

t0

system
boots

t1 time

start 
checksum
computation

t2

send 
checksum
to veri er

t3

send 
hash
to veri er

t0’ t2’

device is reset
and boots from 
a malicious image

malware 
con gures WDT, 
then erases itself 

malware controls device prover program controls device

Fig. 2. Timeline of a WDT reset attack.



Establishing Software-Only Root of Trust 57

3.2 Attacks Exploiting High Execution-Time Variance

In SWATT protocols, the measured time of one nonce-response round is utilized
to detect malicious operations on the prover device; e.g., malicious operations
to forge correct checksum results. Typically the attack-detection threshold is set
based on the overhead caused by possible attacks. If a measured time exceeds
the threshold, it is highly likely that malicious operations are performed on
the prover device. However, the measured time may exhibit significant variance
caused by CPU clock variance, Translation Look-aside Buffer (TLB) misses,
and possibly cache misses. Hence, to avoid false-positive malware detection, the
attack-detection threshold must be extended over the maximal value of the mea-
sured time in normal (no-attack) conditions.

Recent research [27] shows that the modern CPU clock variance can be up to
3–8% and it increases with program execution times. Furthermore, because the
traditional checksum functions read the memory contents in a pseudo-random
pattern, the resulting TLB misses could increase the measured execution time
significantly. To account for these types of execution-time jitter, the maximal
value of the measured time in normal (no-attack) conditions must be extended
significantly; e.g., by nearly 3 % of the average execution time.

Previous software-based attestation schemes did not have to account for high
execution-time variance in setting the maximal execution time threshold. Their

t0

system
boots

t1 time

start 
checksum
computation

t2

send 
checksum
to veri er

t3

send 
correct hash
to veri er

t0’

load malicious 
checksum function 

malware controls device prover program controls device

t2+∆t’

t0

system
boots

t1 time

start 
checksum
computation

t2

send 
checksum
to veri er

t3

send 
correct hash
to veri er

t2’+∆t 

∆t’

Normal Condition (No Attack):

Time Variance-Based Attack:

∆t : anticipated measurement variations (i.e., 3-8%)
∆t’: overhead caused by malicious operations (e.g., 1.4%)

Fig. 3. Timeline of normal condition and time-variance based attack.



58 Y. Li et al.

designs made cache behavior fairly predictable; e.g., the checksums fit into the
cache and random access patterns resulted in predictably high overheard. TLBs
need not be used since measurements were taken in physical RAM, and clock
jitter was small because checksum execution times were short for relatively small
memory configurations. In contrast, some of the new embedded-system proces-
sors force virtual memory (and hence the TLB) use whenever caches are used,
and large memory configurations (i.e., GB size) cause checksum functions to exe-
cute for minutes instead of tens of milliseconds. Consequently, attackers can now
exploit the high execution-time jitter on embedded systems to launch successful
time-variance based attacks with non-negligible probability.

Timeline. Figure 3 shows the timeline of a time-variance based attack. Here,
malware that controls the platform loads a modified checksum function that com-
putes the expected checksum result. To protect the modified contents
(i.e., malicious code) from being detected, the modified checksum function per-
forms additional operations to forge the expected checksum, and these operations
cause an overhead Δt′. However, as shown in the figure, under normal (no-attack)
conditions, the anticipated measured time variation is Δt (i.e., the timing detec-
tion threshold), is larger than Δt′. Consequently, the verifier receives the correct
checksum result within the timing detection threshold, and hence the verifier
cannot detect this attack; i.e., a false-negative detection result.

3.3 Attacks Exploiting I-cache Inconsistency

Modern embedded processors have multiple-level caches. However, to save energy,
some embedded processors may not have hardware support for cache coherence
between Instruction-cache (I-cache) and Data-cache (D-cache), and software has
to maintain cache coherence. For example, the ARM Cortex-A8 processor, which
is widely deployed on embedded platforms, does not have hardware support for
cache coherence between I-cache and D-cache. Software has to use cache main-
tenance instructions to ensure cache coherence. Therefore, the contents of the
I-cache may differ from those of the D-cache, and attackers can leverage this
feature to hide malicious instructions (e.g., malicious instructions in the com-
munication function or hash function) in the I-cache without being detected. We
call this attack the I-cache inconsistency attack.

This attack is similar in spirit to the Split-TLB attacks (Sect. 2.2), where
the I-TLB and D-TLB contain inconsistent mappings for the checksum function
pages. Experience with those attacks suggests that the I-cache inconsistency
attack is equally practical, particularly since its setup is simpler.

Timeline. The timeline of an I-cache inconsistency-based attack is shown in
Fig. 4. Here, malware first loads malicious instructions into the I-cache, then
overwrites the malicious content in memory with the original values to guaran-
tee that only legitimate contents are in the memory during checksum computa-
tion. The malicious code needs to comprise only a few instructions of the hash



Establishing Software-Only Root of Trust 59

t0

system
boots

t1 time

start 
checksum
computation

t2

send 
checksum
to veri er

t3

send 
correct hash
to veri er

t0’

invoke malicious
code in I-Cache 

load malicious code
in I-cache, and overwrite
malicious content in memory
with original values 

malware controls device prover program controls device

t2’

Fig. 4. Timeline of an I-cache inconsistency attack.

or communication function. The checksum function is computed over the legit-
imate memory contents and the correct checksum result is sent to the verifier
program. After the checksum result is sent to the verifier program, the mali-
cious instructions in the I-cache are invoked, and then the adversary controls
the system.

4 Checksum and Attack Implementation

We implemented our SWATT protocol checksum and attacks based on future-
posted events and execution-time variance using a Gumstix FireStorm COM3

as the prover device and a HP laptop as the verifier machine. We leave the
implementation of the I-cache inconsistency attack to future work.

The Gumstix FireStorm COM is a TI DM3730-based platform [28] with
512 MB SDRAM, 64 KB SRAM, and 512 MB NAND Flash. The TI DM3730
Central Processing Unit (CPU) is equipped with an ARM Cortex-A8 core
(MPU) [1] running at 1-GHz. The ARM Cortex-A8 core has two levels of caches
without hardware-support for cache coherence in the first-level caches. The first
level (L1) has a 32 KB I-cache and a 32 KB D-cache while the second level (L2)
has a 256 KB unified cache. The Gumstix COM runs a Linux operating system
(based on Yocto Poky Dylan 9.0.04) with the Linux kernel version 3.5.7. The HP
laptop is connected to the Gumstix COM directly via an Ethernet cable. The
laptop has an Intel Quad-Core i5 CPU running at 2534 MHz, 4 GB of RAM,
and runs 32-bit Ubuntu 12.04 LTS as the guest OS.

We implemented the prover program as a loadable kernel module, which
includes the Ethernet communication function, checksum function, and SHA256
hash function. The checksum implementation for the ARM Cortex-A8 core is
based on the checksum function of PRISM [6]. The prover program uses an AES-
based Pseudo-Random Number Generator. Using part of the pseudo-random
nonce sent by the verifier machine as the seed, the prover program generates
3 https://store.gumstix.com/.
4 https://www.yoctoproject.org/.

https://store.gumstix.com/
https://www.yoctoproject.org/


60 Y. Li et al.

and fills all spare memory space on the Gumstix COM with pseudo-random
values before the checksum computation. On the verifier machine, we run a
verifier program that measures the time of one nonce-response round using the
RDTSC instruction.

In this section, we first describe our checksum function implementation in
detail, and then present the implementation of attacks exploiting the Watch-
Dog Timer and the execution-time variance of our checksum.

4.1 Checksum Function

Checksum Implementation. We implement the checksum function as 32 code
blocks where each code block updates a 32-bit checksum-state variable (out of a
total 32 checksum-state variables) comprising 33 ARM instructions that strongly
order AND, XOR, and SHIFT operations. Each code block takes as input: the
other checksum-state variables, the memory address being read (Data Pointer),
memory contents, current processor status (i.e., the Current Processor Status
Register (CPSR) value), Program Counter (PC), the pseudo-random numbers
generated by a T-function [12], and a counter. The strong ordering of the check-
sum instructions guarantees that they cannot be executed in parallel.

In the checksum function, the 32-bit T-function is used to build a Pseudo-
Random Number Generator (PRNG) to construct the (random) memory
addresses used by the read instructions. Each code block performs two mem-
ory reads: one from the 512 MB SDRAM and the other from the 64 KB SRAM.
Multiple iterations of checksum code-block executions cover the entire memory
content of our system. The checksum function uses all 30 available ARM Gen-
eral Purpose Registers (GPRs) (nb., 2 GPRs in monitor mode are not available
to access on ARM Cortex A8) as follows: 25 GPRs are used to save checksum
states; r0 stores the pseudo-random value from T-function; r1 and r2 are used as
temporary variables; r3 stores the counter value; r12 stores the current check-
sum state. (We also use available Save Processor Status Registers [1] to save
checksum states.) Fig. 5 shows the assembly code of a single checksum block.

Checksum Execution Time. To include every randomly picked memory loca-
tion in the checksum computation at least once with high probability, we set the
checksum code-block iteration number (i.e., the number of checksum code blocks
that execute on the Gumstix COM) to 0xb0000000 based on the Coupon Collec-
tor’s Problem [5]. Our verifier measurements show that a single nonce-response
round (i.e., Step 2 of Fig. 1) takes 765.4 s on average with 2.9 s standard devia-
tion over 371 measurements under normal (no-attack) condition. The maximal
execution time of the nonce-response round is 768.1 s while the minimum value
is 745.0 s. Seven measurements out of the 371 measurements take less than 750 s
while the other 364 measurements take between 765 to 769 s. Thus, the measured
time variance of the seven measurements is about 2.6%.

To get consistent timing results using the RDTSC instruction, we configure
the HP laptop (the verifier machine) running at a constant CPU frequency (2534



Establishing Software-Only Root of Trust 61

r0 Pseudo-Random Number (PRN) in T-function
r1 tmp and memory address to read
r2 tmp
r3 counter
r4 to r14 checksum states
C Carry flag

Assembly Instruction Explanation

umull r2, r1, r0, r0 tmp = PRN × PRN , T-function computation

orr r1, r2, #0x5 tmp = tmp | 5

add r0, r0, r1 PRN = PRN + tmp

and r2, r0, 0x1FFFFFFC offset = PRN & mask

adds r1, r2, 0x80000000 addr sdram = base addr + offset, update C

ldr r2, [r1] tmp = mem[addr sdram]

adcs r12, r12, r2 r12 = r12 + tmp + C, update C

eor r12, r12, r13 r12 = r12 ⊕ r13

adcs r12, r12, r15 r12 = r12 + PC + C, update C

eor r12, r12, r14 r12 = r12 ⊕ r14

adcs r12, r12, r4 r12 = r12 + r4 + C, update C

eor r12, r12, r0 r12 = r12 ⊕ PRN

adcs r12, r12, r5 r12 = r12 + r5 + C, update C

eor r12, r12, r6 r12 = r12 ⊕ r6

adcs r12, r12, r1 r12 = r12 + addr sdram + C, update C

mrs r2, spsr tmp = SPSR

eor r12, r12, r2 r12 = r12 ⊕ tmp

adcs r2, r12, r0 tmp = r12 + PRN + C, update C

movt r2, #0x4020 tmp = (tmp & 0xFFFF ) | 0x40200000

and r1, r2, #0xFFFFFFFC addr sram = tmp & mask

ldr r2, [r1] tmp = mem[addr sram]

adcs r12, r12, r2 r12 = r12 + tmp + C, update C

eor r12, r12, r7 r12 = r12 ⊕ r7

adcs r12, r12, r8 r12 = r12 + r8 + C, update C

eor r12, r12, r1 r12 = r12 ⊕ addr sram

adcs r12, r12, r9 r12 = r12 + r9 + C, update C

eor r12, r12, r10 r12 = r12 ⊕ r10

adcs r12, r12, r11 r12 = r12 + r11 + C, update C

mrs r2, cpsr tmp = CPSR

eor r12, r12, r2 r12 = r12 ⊕ tmp

adcs r12, r3, r12, ROR #1 tmp = rotation shift right 1 bit(r12)
r12 = tmp + counter + C, update C

adcs r0, r0, r12 PRN = PRN + r12 + C, update C

sub r3, r3, #1 counter = counter − 1

Fig. 5. Assembly instructions for a single checksum block.



62 Y. Li et al.

MHz); we also configure the ARM Cortex-A8 processor on the Gumstix COM
running at its maximal CPU frequency (1 GHz).

4.2 WDT Reset Attack Implementation

The implementation of the WDT reset attack against our prover code comprises
two critical steps: the first is the setting WDT timer to reset the device, and the
second is the generation of the correct hash result and its sending to the verifier
program when the system boots up.

Before setting the WDT timer, we must wake it up. Specifically, we have a
dedicated kernel module malmod, which is installed exactly before the attestation
kernel module. The malmod sets EN WDT2 bit (i.e., Bit 5) in the
CM FCLKEN WKUP register and EN WDT2 bit (i.e., Bit 5) in the
CM ICLKEN WKUP register to wake up the WDT timer. A WDT timer has
a large reset period, from 62.5 µs to 74 h 56 min, and the time of one nonce-
response round under normal (no-attack) condition (i.e., 765.4 s) is within the
reset period. In addition, the SHA256 hash computation (i.e., the interval t3 – t2
in Fig. 2) takes about 76 s. The malmod configures the WDT to reset the device
between times t2 and t3 on the time line of Fig. 2, and then starts the WDT
by writing its start/stop register (WSPR) twice using the sequence 0xAAAA
followed by 0x5555 [28]. Before checksum computation starts, the prover kernel
module replaces the memory contents of the malmod with the required pseudo-
random values.

After the correct checksum result is sent to the verifier machine, the Gumstix
COM reboots from an attacker-modified device image. In the modified device
image, we place a script file in the /etc/init.d/ directory, which automatically
executes a malicious program after reboot. In our implementation, the prover
kernel module and the verifier program communicate via ICMP packets. The
malicious program generates the expected ICMP response message including
the correct hash value, and sends the ICMP message to the verifier program.

4.3 Feasibility of the Time-Variance Based Attack

We evaluated the feasibility of time-variance based attacks by measuring the
overhead of a memory-substitution attack (viz., Sect. 2.2) in which an adversary
saves a correct copy of the prover code on the NAND Flash. Then the attacker-
modified checksum verifies every randomly generated memory address to be used
by the read instructions and redirects the reads to the original copy on the NAND
Flash whenever they attempt to use the attacker-modified checksum contents.

In this attack, the attacker-modified checksum function reads the entire
SDRAM (512 MB) in a pseudo-random pattern. Note that the attacker-modified
SDRAM content (i.e., the modified checksum code blocks) represents only a
small fraction; i.e., about 4 KB or 0.00076%5. Consequently, the main over-
head of this attack is caused by the instructions that verify the pseudo-random
5 4

512×1024
= 0.0000076.



Establishing Software-Only Root of Trust 63

SDRAM memory address and redirect the reads when necessary. In the eval-
uation, we ignore the small and relatively rare overhead caused by the actual
reading the NAND Flash, and evaluate the frequent overhead caused by the
additional instructions that check the randomly generated SDRAM address.

We added six instructions in each modified checksum block to verify every
pseudo-random SDRAM memory address used by the read instructions; i.e., one
instruction to jump out of the modified checksum code block to avoid changing
the PC value incorporated into the checksum; four instructions to check if the
memory address is within the modified memory space and to restore the previous
Current Processor Status Register (CPSR) value; and one instruction to jump
back to the checksum block. We measured the time of one nonce-response round
of the SWATT protocol (i.e., Step 2 of Fig. 1) using the modified checksum
function on the Gumstix COM. The measurement results show that the overhead
caused by the six additional instructions is only 1.4%6, which is much smaller
than the time variance under the normal (no-attack) condition; i.e., 2.6%, as
shown in Sect. 4.1. Consequently, this instance of a memory substitution attack
will succeed with non-negligible probability.

5 Challenges for Effective Countermeasures

Challenges. To counter attacks exploiting future-posted events, the checksum
function needs to capture the values of all critical configuration registers in the
checksum result. Thus the setting of future-posted events would cause an incor-
rect checksum result. This countermeasure is less straight-forward than it might
first appear, for two reasons. First, modern embedded platforms have a large
numbers of configuration registers with complex configuration options; e.g., there
are thousands of I/O device control registers in the Gumstix ARM Cortex-A8
platform that must be analyzed. Thus, finding all critical configuration options
that may enable such attacks becomes a non-trivial exercise. Second, the assur-
ance of a correct setting that disables future-posted WDT events depends on
effective countermeasures to attacks that exploit high execution-time variance
and I-cache inconsistency (discussed below).

To counter attacks that exploit I-cache inconsistency, a possible approach
is to design a checksum function whose size is larger than the I-cache. Thus
during checksum execution, the code blocks in the I-cache will be evicted and
replaced. However, attackers may be able to compress the checksum code blocks
(e.g., by removing duplicate instructions), add malicious instructions and run the
compressed checksum code blocks in the I-cache instead of the original, larger
blocks. It is extremely challenging to guarantee that a checksum function can-
not be compressed to fit into the I-cache. For example, one might include the
cache-miss counter, which is used by the system performance monitor, to the
checksum computation [10], in an attempt to prevent attackers from running
6 The primary reason the overheard added by the six instructions is so small is that

the instruction which reads from a pseudo-random memory address in every code
block consumes many more CPU cycles than six instructions.



64 Y. Li et al.

a smaller checksum function that will change the cache-miss counter. However,
this countermeasure would require that the cache replacement policy be deter-
ministic. Otherwise, the verifier program could not predict and verify the check-
sum results. Unfortunately, on the TI DM3730 platform, the ARM Cortex-A8
processor utilizes a random-replacement policy for the I-cache.

Yet another possible approach to counter attacks that exploit I-cache incon-
sistency is to utilize dynamically modified instructions in the checksum code
blocks. Then, one could insert instructions into these code blocks that invalidate
all I-cache blocks. For example, the ARM Cortex-A8 instruction set includes
an instruction that invalidates all I-cache blocks. However, attackers may per-
form read-decode-execute operations to handle dynamically modified checksum
instructions and avoid the invalidation of the I-cache blocks. That is, in a read-
decode-execute operation, adversary-modified (i.e., malicious) checksum code
in the I-cache can read the dynamically modified instructions, decode them,
and execute code based on the decoded information. Thus, the modified (i.e.,
malicious) checksum function can avoid the instruction that invalidates I-cache
blocks. Obtaining demonstrable countermeasures for attacks that exploit I-cache
inconsistency is extra challenging because they depend on other countermea-
sures; i.e., on those for the time-variance based attacks (discussed below).

To counter attacks that exploit high execution-time variance, one could mod-
ify the checksum design to force attackers to perform complex operations and
cause an unavoidable increase of execution overhead. A possible approach would
be to add performance-monitor values (e.g., the executed instruction counter,
the TLB-miss counter) in the checksum computation. Unfortunately, this might
not increase the attack overhead sufficiently for detection. For example, attackers
may need only several additional instructions to calculate the correct instruction
counter. In addition, attackers may run the malicious code in the same page with
the checksum function, thereby avoiding changes to the TLB-miss counter. The
I-cache-miss counter may force attackers to perform a large number of opera-
tions to obtain the expected value; e.g., by simulating the I-cache replacement.
However, this also requires that the I-cache replacement policy be deterministic,
which is not the case for the ARM Cortex-A8.

Effectiveness. To be effective, a countermeasure for a given attack must not
only deny the attacker’ goal but must also compose with countermeasure for
other possible attacks; e.g., a countermeasure can be effective for an attack only
if other countermeasures are effective against other attacks [8]. Composition
requires that all dependencies between countermeasures be found and cyclic
dependencies removed [9].

Countermeasure dependencies exist for our attacks. For example, the counter-
measures for the future-posted WDT reset attack depend on the countermeasures
for attacks that exploit high execution-time variance and I-cache inconsistency.
Unless these two attacks are countered effectively, the adversary can modify the
checksum code to erase the instructions that disable future-posted WDT events.
Furthermore, a dependency exists between the countermeasures for the I-cache
inconsistency attack and that for time-variance attack. The former depends on



Establishing Software-Only Root of Trust 65

the latter, since the time-variance attack can be used to modify the checksum
code so that the I-cache resetting instructions are erased.

6 Related Work

Reflection [26] is a software-only approach to verify program code running on an
untrusted system. Reflection fills the spare memory with pseudo-random con-
tent, resets the system state, and computes a hash over the entire memory. A
verifier machine checks the hash results and the execution time. Genuinity [10]
validates the system configuration of a remote machine using software-based
mechanisms. Genuinity reads memory in a random pattern to cause a large
number of TLB misses, and incorporates the number of TLB misses in the
checksum result, preventing attacks based on the observation that simulating
the hardware operations (e.g., TLB block replacement) is slower than the actual
execution. However, Genuinity is vulnerable to memory-copy attacks [25]; viz.,
Sect. 2.2.

SWATT [23] performs software-based attestation for embedded systems. In
SWATT, a checksum function computes a checksum over the entire memory
contents using strongly-ordered AND, ADD, and XOR operations. An external
verifier checks the checksum results and the execution time. The main idea was
that malicious operations would either invalidate the checksum results or cause
detectable timing delays, or both. However, this protocol does not aim to counter
attacks caused by future-posted events, cache (in)coherence, or high execution-
time variance; e.g., CPU clock variance, cache- and TLB-caused jitter.

Pioneer [22] establishes an untampered execution environment over a small
piece of memory on an AMD Opteron K8 architecture platform. The Pioneer
checksum disables all interrupts, and computes its result over a small piece of
memory. Naturally, the Pioneer design could not anticipate the future hardware
features of embedded platforms that we address in this paper. PRISM [6] used
software based attestation to establish untampered code execution on embedded
ARM platforms. However, PRISM does not address the possible challenges of
cache (in)coherence and high execution-time variance presented in this paper.

SBAP [15] verifies the firmware integrity of an Apple aluminum keyboard
that has limited resources using software-only approaches. VIPER [16] verifies
the integrity of peripherals’ firmware on commodity systems using software-
based attestation mechanisms. VIPER describes the possible mechanisms to
prevent proxy attacks in software-based attestation protocols. Like Pioneer, the
VIPER design could not anticipate the impact of future hardware features on
software-based attestation. Kovath et al. [14] propose a comprehensive timing-
based attestation system that verifies the system integrity of machines in enter-
prise environments. It successfully detects attacks that have only 1.7 % over-
head. However, the low detection threshold may cause a significant number
false-positive detection of malware because of the CPU clock variance, which
can reach 3 % of execution time on some embedded-system platforms.

Armknecht et al. [2] propose an abstract security model for design and analy-
sis of software-based attestation protocols. However, this model does not aim to



66 Y. Li et al.

address SWORT protocols nor to offer concrete checksum designs that could
counter the the attacks of new hardware features described in this paper.

7 Conclusions

Embedded system platforms are used pervasively in security-sensitive appli-
cations, and consequently are becoming attractive targets of attack [13]. Yet,
existing software-based attestation protocols designed for such applications can-
not address the newly introduced complex hardware features that enable new
attacks. As a result, attackers can leverage these features to break the security
of SWORT protocols. This paper presents new attacks whose countermeasures
appear to require a significant redesign of traditional software-based attestation
protocols. In particular, we find dependencies among countermeasures, which
show that countermeasures must compose to achieve SWORT protocol security.

Acknowledgements. We are grateful to David Brumely, Tom Forest, Di Jin, and
Maverick Woo for their comments and suggestions on the research reported herein.
This work was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under contract N66001-13-2-404 and by a grant from the General Motors
(GM) Corporation at CyLab, Carnegie Mellon University. The views and conclusions
contained here are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either express or implied, of CMU,
GM, DARPA, or the U.S. Government or any of its agencies.

References

1. ARM. Cortex-A8 technical reference manual. Revision:r3p2, May 2010
2. Armknecht, F., Sadeghi, A.-R., Schulz, S., Wachsmann, C.: A security framework

for the analysis and design of software attestation. In: Proceedings of ACM Con-
ference on Computer and Communications Security, pp. 1–12 (2013)

3. Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel, G., Tsay, J.-K.:
Efficient padding oracle attacks on cryptographic hardware. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 608–625. Springer, Hei-
delberg (2012)

4. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of
software-based attestation of embedded devices. In: Proceedings of the ACM Con-
ference on Computer and Communications Security, November 2009

5. Erdos, P., Renyi, A.: On a classical problem of probability theory. In: Proceedings
of Magyar Tudomanyos Akademia Matematikai Kutato Intezetenek Kozlemenyei,
pp. 215–220 (1961)

6. Franklin, J., Luk, M., Seshadri, A., Perrig, A.: Prism: enabling personal verifica-
tion of code integrity, untampered execution, and trusted I/O or human-verifiable
code execution. CyLab Lab Technical report CMU-CyLab-07-010, Carnegie Mellon
University (2007)

7. Garay, J.A., Huelsbergen, L.: Software integrity protection using timed executable
agents. In: Proceedings of ACM Symposium on Information, Computer and Com-
munications Security, pp. 189–200 (2006)



Establishing Software-Only Root of Trust 67

8. Gligor, V.: Dancing with the adversary: a tale of wimps and giants. In: Chris-
tianson, B., Malcolm, J., Matyáš, V., Švenda, P., Stajano, F., Anderson, J. (eds.)
Security Protocols 2014. LNCS, vol. 8809, pp. 100–115. Springer, Heidelberg (2014)

9. Kailar, R., Gligor, V., Gong, L.: Effectiveness analysis of cryptographic protocols.
In: Proceedings of IFIP Conference on Distributed Computing for Critical Appli-
cations. Springer, January 1994

10. Kennell, R., Jamieson, L.H.: Establishing the genuinity of remote computer sys-
tems. In: Proceedings of the USENIX Security Symposium, pp. 295–308 (2003)

11. Kim, T.H.-J., Huang, L.-S., Perrig, A., Jackson, C., Gligor, V.: Accountable Key
Infrastructure (AKI): a proposal for a public-key validation infrastructure. In: Pro-
ceedings of International World Wide Web Conference (WWW) (2013)

12. Klimov, A., Shamir, A.: A new class of invertible mappings. In: Kaliski, B.S., Koç,
K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523. Springer, Heidelberg (2002)

13. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security
analysis of a modern automobile. In: Proceedings of IEEE Symposium on Security
and Privacy, pp. 447–462 (2010)

14. Kovah, X., Kallenberg, C., Weathers, C., Herzog, A., Albin, M., Butterworth, J.:
New results for timing-based attestation. In: Proceedings of IEEE Symposium on
Security and Privacy, pp. 239–253 (2012)

15. Li, Y., McCune, J.M., Perrig, A.: SBAP: software-based attestation for peripherals.
In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101,
pp. 16–29. Springer, Heidelberg (2010)

16. Li, Y., McCune, J.M., Perrig, A.: VIPER: verifying the integrity of peripherals’
firmware. In: Proceedings of ACM Conference on Computer and Communications
Security, pp. 3–16 (2011)

17. Martignoni, L., Paleari, R., Bruschi, D.: Conqueror: tamper-proof code execution
on legacy systems. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010. LNCS, vol.
6201, pp. 21–40. Springer, Heidelberg (2010)

18. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping Trust in Modern Computers.
SpringerBriefs in Computer Science, vol. 10. Springer, New York (2011)

19. Sagoian, C., Stamm, S.: Certified lies: detecting and defeating government inter-
ception attacks against SSL. In: Proceedings of ACM Symposium on Operating
Systems Principles, pp. 1–18 (2010)

20. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: SCUBA: secure code
update by attestation in sensor networks. In: Proceedings of ACM Workshop on
Wireless Security, pp. 85–94 (2006)

21. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In: Proceedings of ACM Sym-
posium on Operating Systems Principles, pp. 335–350 (2007)

22. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer: ver-
ifying integrity and guaranteeing execution of code on legacy platforms. In: Pro-
ceedings of ACM Symposium on Operating Systems Principles, pp. 1–16, October
2005

23. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: SWATT: software-based attes-
tation for embedded devices. In: Proceedings of IEEE Symposium on Security and
Privacy, pp. 272–282 (2004)

24. Shaneck, M., Mahadevan, K., Kher, V., Kim, Y.-D.: Remote software-based attes-
tation for wireless sensors. In: Molva, R., Tsudik, G., Westhoff, D. (eds.) ESAS
2005. LNCS, vol. 3813, pp. 27–41. Springer, Heidelberg (2005)



68 Y. Li et al.

25. Shankar, U., Chew, M., Tygar, J.: Side effects are not sufficient to authenticate
software. In: Proceedings of the USENIX Security Symposium (2004)

26. Spinellis, D.: Reflection as a mechanism for software integrity verification. ACM
Trans. Inf. Syst. Secur. 3(1), 51–62 (2000)

27. Tam, S.: Modern clock distribution systems. In: Xanthopoulos, T. (ed.) Clocking
in Modern VLSI Systems, Chap. 2. Integrated Circuits and Systems, pp. 6–95.
Springer, USA (2009)

28. Texas Instruments. AM/DM37X multimedia device technical reference manual.
Version R, September 2012

29. The Trusted Computing Group. TPM Main specification version 1.2 (revision 116)
(2011)

30. Wollinger, T., Guajardo, J., Paar, C.: Security on FPGAs: state-of-the-art imple-
mentations and attacks. ACM Trans. Embed. Comput. Syst. (TECS) 3, 534–574
(2004)

31. Wurster, G., van Oorschot, P., Anil, S.: A generic attack on checksumming-based
software tamper resistance. In: Proceedings of IEEE Symposium on Security and
Privacy, pp. 127–138 (2005)

32. Zhao, J., Gligor, V., Perrig, A., Newsome, J.: ReDABLS: revisiting device attesta-
tion with bounded leakage of secrets. In: Christianson, B., Malcolm, J., Stajano,
F., Anderson, J., Bonneau, J. (eds.) Security Protocols 2013. LNCS, vol. 8263, pp.
94–114. Springer, Heidelberg (2013)


	Establishing Software-Only Root of Trust on Embedded Systems: Facts and Fiction
	1 Introduction
	2 Software-Only Root of Trust
	2.1 Architecture and Protocol
	2.2 Known Attacks Against SWATT

	3 New Attacks Against the SWORT Protocol
	3.1 Future-Posted Event Attacks
	3.2 Attacks Exploiting High Execution-Time Variance
	3.3 Attacks Exploiting I-cache Inconsistency

	4 Checksum and Attack Implementation
	4.1 Checksum Function
	4.2 WDT Reset Attack Implementation
	4.3 Feasibility of the Time-Variance Based Attack

	5 Challenges for Effective Countermeasures
	6 Related Work
	7 Conclusions
	References


