
BlockPKI: An Automated, Resilient, and Transparent
Public-Key Infrastructure

Lukasz Dykcik
ETH Zurich

Laurent Chuat
ETH Zurich

Pawel Szalachowski
SUTD

Adrian Perrig
ETH Zurich

Abstract—This paper describes BlockPKI, a blockchain-based
public-key infrastructure that enables an automated, resilient,
and transparent issuance of digital certificates. Our goal is to
address several shortcomings of the current TLS infrastructure
and its proposed extensions. In particular, we aim at reducing
the power of individual certification authorities and make their
actions publicly visible and accountable, without introducing yet
another trusted third party. To demonstrate the benefits and
practicality of our system, we present evaluation results and
describe our prototype implementation.

I. INTRODUCTION

Now more than ever, the use of secure communication
protocols is encouraged and promoted. Browser vendors (e.g.,
Google with Chrome [34], or Mozilla with Firefox [42]) have
started changing the appearance of security indicators in the
address bar: regular HTTP connections, which used to look
neutral [14], are now described as “not secure”, whereas
HTTPS connections are clearly labeled as “secure”. As more
and more administrators and developers are becoming aware
of the risks associated with using unsecure protocols, and as
vulnerable means of communication are being deprecated [15],
cryptographically protected protocols (such as TLS) are be-
coming the norm.

Unfortunately, the TLS public-key infrastructure (PKI)
suffers from a weakest-link security problem: any trusted
certification authority (CA) can on its own produce a valid
certificate for any domain name. A certification authority is
considered trusted by a client if its certificate is present in
the client’s list of root CAs or signed by another trusted CA.
By compromising any root or intermediate CA, an attacker
can compromise the security of the entire system. For this
reason, Google developed the Certificate Transparency (CT)
framework [23], which relies on append-only logs to make
certificates publicly available. Unfortunately, that approach
comes with a few drawbacks: CT enables the detection of
CA misbehavior but does not prevent it. Moreover, the list
of log servers is maintained by a single entity. Although the
log’s contents can be consulted and proved to be consistent,
log servers can choose to ignore queries. Finally, to avoid a
split-world attack, in which a malicious log server would show
inconsistent versions of the log to different clients, a gossip
protocol is needed [10]. Consequently, in order to tolerate
a malicious or compromised CA, every certificate issuance
should involve multiple CAs and all operations should be
logged securely and in a fully distributed way.

For TLS to become truly ubiquitous on the web, the
issuance of digital certificates must be frictionless. In this
spirit, the “Let’s Encrypt” CA offers free, widely-accepted

certificates as well as tools for automating their issuance, re-
issuance, and revocation. These unique characteristics have
made it incredibly successful, with over 50 million active
certificates as of March 2018 [24]. Let’s Encrypt has managed
to offer free services only thanks to a multitude of sponsors,
though; automation helps reducing costs, but it does not
eliminate them [1]. Therefore, an ideal PKI (which involves
multiple CAs for each certificate issuance) should also include
a payment framework, so that non-subsidized CAs can be
remunerated efficiently and conveniently.

In this paper, we present BlockPKI, a public-key infras-
tructure that employs smart contracts to provide the following
features:

• Automation: The certificate issuance process—including
the transmission of a request to selected CAs, proving
control over the domain name, making the newly created
certificate publicly visible, and paying the signing CAs—
necessitates minimal human involvement.

• Resilience: No single entity has the ability to issue
an illegitimate certificate or disrupt normal operations.
BlockPKI relies on a blockchain, which prevents the
situation where a single entity (such as a log server)
can ignore requests and block the issuance or verification
process. Moreover, several CAs must be involved to
produce a valid certificate, which greatly improves the
system’s tolerance to compromise.

• Transparency: All operations relative to certificate man-
agement are logged in the blockchain, which allows
monitoring of all operations and detection of anomalies.

To achieve similar objectives, many existing schemes intro-
duce various trusted parties (such as log servers) with different
roles, scopes, and responsibilities [4, 22, 29, 37]. A blockchain,
as a distributed append-only ledger, can support a certificate
log without introducing any trusted third party. Using a PKI-
dedicated gossip protocol becomes unnecessary; exchanging
and storing block headers is sufficient for clients to verify that
all relevant operations are logged consistently.

II. BACKGROUND

BlockPKI makes use of several existing data structures and
schemes that we briefly describe in this section.

A. Schnorr Multi-Signatures

The Schnorr algorithm [35] is a digital signature scheme
that can be extended [32] to a multi-signature scheme, enabling
several independent entities to produce a concise signature.
Creating a multi-signature involves two rounds. Consider n

entities signing a statement m. Each entity is characterized by
its public key Qi and private key xi, where Qi = gxi and g
is a publicly known group generator. In the first round, each
entity generates a pair of private/public nonces (ki, Ni), such
that Ni = gki , and communicates the public nonce Ni to all
other participants. In the second round, each entity combines
all public nonces and gets N = ∏

n
i Ni. With N and its private

nonce ki, the entity computes its partial signature si = ki−exi,
where e = h(N ‖ m) and h is a hash function, and broadcasts
it. Now anyone can combine all partial signatures s = ∑

n
i si to

form a merged signature (e, s), which can be verified with a
combined public key Q = ∏

n
i Qi, similarly to a single Schnorr

signature, i.e., by calculating N′ = gsQe and checking whether
e = h(N′ ‖ m). Combining public keys or partial signatures
does not require knowledge of any signer’s private key. The
private nonce must be kept private and destroyed after creating
the partial signature as disclosing it may leak the long-term
private key xi.

B. Blockchains and Smart Contracts

A smart contract is a computer program executed in a
trusted, impartial environment. In contrast to real-life agree-
ments, no third parties are needed to enforce the rules written
in the contract. Currently, the most common way of ensuring
an impartial execution environment for smart contracts is to
use a blockchain. A blockchain is a data structure where each
block header contains a cryptographic hash of the previous
block. Each block also contains a list of transactions.

Blockchains typically rely on Merkle trees to efficiently
and securely include transactions in block headers. In a Merkle
tree, each non-leaf node is labeled with the hash of all its child
nodes. Such a data structure allows anyone to produce concise,
unique, and easy-to-verify inclusion proofs. The size of such a
proof grows logarithmically with the number of leaves in the
tree. The advantage of this approach is that even a so-called
light client (i.e., clients holding only block headers, rather than
the entire blockchain) can verify that a given transaction is
included in the blockchain.

Typically, new blocks (with new transactions) are appended
to the blockchain in a stochastic process called mining; ev-
ery block must be backed up by sufficient proof of work,
i.e., finding a new block requires solving a computationally
intensive problem. It may happen that two miners produce
a proof of work for the next block simultaneously, then
two versions of the blockchain may coexist. This problem is
resolved by the rule that the longest chain is accepted as the
valid one. Having these properties, one can treat the blockchain
as a distributed database in which every block is immutable
and creating an alternative version of the entire database is
computationally infeasible due to the above-mentioned proof-
of-work mechanism.

With smart contracts running on a blockchain, censorship
and manipulations become highly impractical. Every machine
that participates in the blockchain system by checking the
validity of new blocks is called a node, some nodes are also
miners. Machines that download and verify block headers
only and acquire information about transactions on an as-
needed basis are called light clients. Blockchain users have
accounts identified by unique addresses. Accounts can be used

to publish new contracts or interact with existing ones. Each
contract running on the blockchain is also identified by a
unique address. To call a method in a contract, the user needs
to know the method’s name and arguments.

Usually, blockchain systems are open and prevent spam-
ming by charging a small fee for each action. In order
to be included in the blockchain each transaction must be
accompanied by a fee. The fee is then transferred to the
miner of the block with this transaction. Fees are expressed
using a cryptocurrency, a digital token with a monetary value.
Cryptocurrency can be mined, received from another user, or
bought with fiat money on specialized exchange platforms.

C. Automatic Certificate Management

The Automatic Certificate Management Environment or
ACME [3] is a proposed standard used by Let’s Encrypt to
automate the issuance of domain-validated (DV) certificates.
The domain validation process of ACME involves three major
steps: (a) Upon request, the CA sends a set of challenges
to the purported domain owner. These challenges can consist
in setting up a special DNS record or making a file with a
specified content available at a given path under the requested
domain name. (b) A script completes the challenges and sends
to the CA a set of responses specifying which challenges have
been completed. (c) The CA checks whether the challenges
have been correctly executed and issues the certificate. Note
that being able to control the domain name or the web server’s
root directory suffices to obtain a DV certificate.

III. SYSTEM MODEL

We distinguish four main roles in BlockPKI:

• Requesters control domain names and want to obtain
certificates by proving ownership of these domain names
to CAs.

• Certification authorities (CAs) in BlockPKI are similar
to today’s root certification authorities. They are trusted
entities (i.e., their public keys are axiomatically trusted
by the clients’ software) able to accept requests, verify
the identity of the requester, and produce a signature.

• Clients want to establish secure TLS connections to web
servers. They check the validity of the delivered certificate
using a list of self-signed root CA certificates, which
usually comes with the client’s browser or OS. There are
three types of clients, with varying security guarantees
(from the weakest to the strongest):
◦ Blockchain-unaware: This type of client does not in-

teract with the blockchain whatsoever, and thus cannot
verify that a received certificate is visible to everyone
(so that a potential anomaly can be detected), but
still benefits from the security advantage of multi-
signatures.

◦ Lightweight: Such a client fetches, validates, and
stores block headers to verify that a received certificate
corresponds to a transaction that is included in a block.

◦ Full node: Clients that maintain the complete block-
chain are called full nodes. Doing so requires substan-
tially more resources than only fetching block headers
but provides the maximum level of security.

• Web servers are controlled by requesters and can be
used to prove ownership of a domain name, i.e., if a

domain name resolves to the address of a web server
that the requester controls, then the requester can make
it serve any content from any given path as evidence
of ownership. The goal of the requester is to obtain a
certificate to secure connections from clients to its web
server.

Throughout the paper, we assume the following: (a) The
public keys and blockchain account addresses of root CAs
are publicly known. (b) The code of BlockPKI contracts is
publicly known, thus everyone can verify and audit the code
and everyone knows how to interact with these contracts.
(c) The blockchain addresses of permanent contract instances
are known to all requesters and CAs.

For the sake of simplicity, we also assume that CAs and
requesters are locally maintaining the blockchain. However,
requesters could use a proxy to interact with the blockchain.

A parameter T specifies the number of CAs signing the cer-
tificate. The adversary’s goal is to create a fraudulent certificate
for a domain. To this end, the adversary can compromise CAs
and conduct impersonation attacks, but cannot compromise the
targeted domain. Specifically, we assume that the adversary can
corrupt i CAs and mount a domain-impersonation attack on j
other CAs, as long as i+ j < T . If i+ j ≥ T the adversary
can create a fraudulent certificate that will be accepted by
clients. Even in such a case, however, BlockPKI’s objective
is to provide a high probability of attack detection.

Furthermore, we assume that the attacker does not control
the majority of the blockchain computational power. This
means that she cannot launch a so-called 51% attack on the
underlying blockchain, thus she cannot roll back changes in
the blockchain and cannot censor transactions from entering
the blockchain.

IV. BLOCKPKI OVERVIEW

In BlockPKI, CAs conduct automated domain validation.
Moreover, in order to address the weakest-link problem of the
current infrastructure, BlockPKI mandates multi-path probing
(i.e., each domain name must be validated by several CAs).
One of our goals is to automate not only the domain-validation
process, but also the certificate creation process. To this end,
BlockPKI relies on smart contracts, which allow automated
interactions between requesters and CAs.

BlockPKI requires that each certificate be signed by T CAs,
so that one careless or compromised CA cannot create client-
accepted certificates by itself. Requesters can choose the value
of T they want to use, but browser vendors will effectively
dictate a lower bound on this value, as browsers may refuse
a certificate signed by an insufficient number of CAs. We
envision that T will initially be very small (perhaps even just
one during early stages of deployment) and then increase over
time.

In this section, we provide a brief overview of how Block-
PKI deals with two main aspects of public-key infrastructures:
certificate issuance and certificate verification.

The certificate issuance process is illustrated in Figure 1
and summarized below:

Requester

Contract

7

Blockchain

CAs
Certification

Authorities

1

2

3

4

5

Certificate

Storage

6

Fig. 1: Overview of the certificate issuance process.

1) The requester creates a contract on the blockchain that
will gather signatures from CAs. In the contract, the
requester specifies certificate parameters, the blockchain
addresses of T CAs authorized to sign the certificate, and
the amount of financial compensation for each signature.

2) The CAs detect the new contract and check whether they
are authorized to validate the public key of the requester.

3) The authorized CAs perform the public-key verification.
To pass the verification, the requester must prove control
of the domain to the CAs.

4) If the verification is successful, each authorized CA sends
its partial signature to the contract and receives the
financial compensation.

5) The requester gathers signatures from the blockchain,
combines them into a single multi-signature and appends
it to the certificate data.

6) The requester puts the multi-signature and certificate data
as a payload in a transaction and publishes it in the
blockchain.

7) The transaction together with the proof of its inclusion in
a mined block forms a BlockPKI certificate.

Certificates are used for establishing TLS connections.
When a client connects to a server, the clients obtains the
domain’s certificate during the TLS handshake. In BlockPKI,
to validate the certificate’s authenticity the client verifies
(a) that the domain name is correct and that the certificate is not
expired, (b) whether the certificate is signed by the threshold
number T of CAs (trusted by the client), and (c) whether
the locally maintained block headers or blockchain match the
inclusion proof of the transaction containing the certificate data
(if the client is either a lightweight or full blockchain node).

V. BLOCKPKI IN DETAIL

A. Contracts

Smart contracts are used for the automation of most inter-
actions: certificate request, payment handling, and certificate
issuance. BlockPKI uses three types of contracts:

• The central contract receives certificate requests, verifies
them, and maintains a list of accepted requests. There is a
single instance of the central contract on the blockchain,
and all requesters and CAs know its blockchain address.

• Domain contracts are created by the central contract and
serve certificate requests (i.e., they receive signatures and
issue compensation). A new domain contract is created
for every certificate request.

• The storage contract is used as a recipient of transactions
containing certificate data and a Schnorr signature.

Central Contract. To obtain a certificate, the requester
must create a new domain contract using the central contract,

which works as a contract factory. The pseudocode of the
central contract is presented in Listing 2 in the appendix. The
central contract ensures that all certificate requests are stored
in one place in the blockchain and that each domain contract
has the same, publicly known code, so that protocol parties
have a uniform way to interact with each other. Furthermore,
the central contract guarantees that all domain contracts are
accompanied with sufficient funds to pay all CAs, and that
provided parameters are valid. The central contract implements
a method called createDomainContract that requesters
use to create a domain contract with their parameters. The
requester specifies the following parameters: certificate data,
the list of authorized CAs (identified by blockchain addresses),
and the amount of financial compensation for each signature.
If the amount of cryptocurrency supplied when creating a new
domain contract is insufficient to cover all compensations,
then the contract cannot be created. For flexibility, a domain
contract can handle any value of T . However, we assume that
T is a global system parameter (i.e., browser and requester
software should all use the same value), but it may be increased
in the long-run for improved security. A requester may also
list more CAs than T for increased resilience, as we discuss
in Section IX, but we ignore this possibility for the time being
for the sake of simplicity.

Domain Contract. The domain contract is created for every
certificate request and is a crucial element in automating
certificate issuance. It enables CAs to create a multi-signature
by providing a platform for exchanging public nonces. In par-
ticular, the domain contract handles the following operations
required to issue a certificate: (a) receiving T CA signatures
over the certificate, and (b) paying the CAs for submitting their
signatures. Additionally, the contract implements the logic
ensuring that the protocol is executed in the correct order
(e.g., it receives signatures after all nonces are present). The
code of the domain contract is presented in Listing 4. A new
domain contract is constructed with the parameters provided
when calling the createDomainContract method. The
contract contains all the information necessary for obtaining a
certificate: the domain name, the public key, and the validity
period. Additionally, the requester specifies the CAs allowed
to participate in the issuance of the certificate and sets a
compensation for each of the CAs.

Storage Contract. The contract serves as a recipient of
transactions containing signed certificate data. Upon reception
of the transaction, the contract stores its content in an internal
storage. Pseudocode of the contract is provided in Listing 3.

B. Certificate Issuance

CAs observe the blockchain for new domain contracts.
Once a new contract is detected, each CA checks if it is
specified as authorized to validate the domain’s public key.

Domain Validation. If the CA is requested to issue the
certificate, it performs an ACME domain validation. In this
process, the owner of the public key proves ownership of the
domain, hence the association between the public key and
the domain can be established. The requester’s server runs a
program that waits for and completes all verification challenges
sent from CAs. The challenges, for example, may require to
add a file with a specified content at a specified path on the web

Certificate data (similar to X.509), logged in the blockchain:

{ subjectName: "www.example.com",
issuers: ["CA1", "CA2", "CA3", "CA4"],
notBefore: 1 January 2018, 01:00:00 CEST,
notAfter: 1 February 2018, 01:00:00 CEST,
publicKey: B1:E1:37...,
schnorrSignature: 4A:BD:FF...,
... }

Domain certificate with inclusion proof:

{ transaction: C5:93:83..., // contains certificate data
blockNo: 123456,
inclusionProof: [AB:99:7F..., 63:D5:F7...

AB:D6:9A..., F4:23:89..., A7:45:63..., ...] }

Listing 1: Example of BlockPKI certificate.

server. If verification confirms the validity of the information in
the domain contract, the CA proceeds to signing the certificate.

Signing the Certificate. To keep certificates compact, we
use the Schnorr algorithm in the multi-signature setting (see
Section II-A). The signing process begins with generating
a private-public nonce pair (ki,Ni) and sending the pub-
lic nonce Ni in a transaction to the domain contract (see
sendCertPubNonce in Listing 4). After all T nonces are
put in the domain contract, an authorized CA can send its
signature si by calling sendCertSignature. To issue the
signature, nonces of all other CAs involved in creating the
Schnorr multi-signature are needed. The CA extracts them
from the domain contract and combines them. Then, the CA
sends its partial signature of the certificate to receive its
compensation. All partial signatures are permanently stored
in the domain contract, they can be read by any blockchain
user and combined together into a single, compact Schnorr
signature.

Creating the Final Certificate. Gathering signatures is one of
the main goals of the domain contract. The requester observes
her domain contract and waits until all signatures are gathered.
Then, the requester combines all partial signatures into a
compact Schnorr multi-signature. If the signature is correct,
the requester creates a list of IDs of CAs that took part in
signing the certificate; the IDs will enable clients to verify
the signature. Then, the requester sends a transaction with
the certificate data, the list of IDs, and the multi-signature
to the storage contract and waits for the inclusion of his
transaction in a block in the blockchain. Once a block with the
transaction is mined, the requester reads the inclusion proof of
the transaction in the Merkle tree encompassing all transactions
included in the block. The root of this tree is contained in the
block header. The transaction together with its inclusion in a
particular block creates a certificate as presented in Listing 1.
To make sure that the transaction is included in the blockchain
and that the chain will not be re-written, the requester should
wait until a number of blocks are mined. With each block
mined on top of the one with the considered transaction,
chances of the transaction being removed from the blockchain
exponentially decrease to 0 [9]. After the certificate is created,
the requester can upload it to the domain’s servers, so that it
can be used to establish TLS connections with clients.

Previous

Hash
Nonce

Merkle

Root
Timestamp

Previous

Hash
Nonce

Merkle

Root
Timestamp

H01 H23

Tx3

H2 H3

Transaction

Inclusion Proof

Previous

Hash
Nonce

Merkle

Root
Timestamp

Fig. 2: Transactions are included into block headers using Merkle trees. In
this simplified example, one can prove to someone who holds the root of the
Merkle tree that Tx3 is included in the corresponding block by showing hashes
H2 and H01. In BlockPKI, this mechanism is used to prove to clients that
certificates are logged in the blockchain.

C. Certificate Verification

The certificate verification process is presented in Listing 5
(see Appendix). Certificate data, a Schnorr multi-signature,
and the list of CAs that contributed to the multi-signature are
contained in the payload of the transaction delivered as a part
of the certificate (see Listing 1). First, the client reads data
from the transaction and combines public keys of the CAs that
are listed in the transaction (i.e., in the certificate). The clients
also make sure that signing CAs are trusted. Then, the client
ensures that (a) the domain name from the certificate matches
the visited website’s address, (b) the certificate is not expired,
(c) the multi-signature over the certificate is correct (i.e., signed
by the listed CAs), and (d) the transaction corresponding to the
certificate is present in the blockchain. We note, however, that
this last operation can be performed asynchronously and only
by clients who maintain either a lightweight of full version of
the blockchain.

As described in Section II-B, light clients keep all block
headers, and each header contains, among other information,
the root of the Merkle tree containing all transactions of the
block. To check whether the transaction is present in a block,
the client reads the Merkle root from the block and checks
whether the inclusion proof delivered with the certificate is
correct. Figure 2 illustrates block headers with the inclusion
proof of a transaction. Light clients could get the inclusion
proof from peers using a dedicated protocol, but asking for
such a proof would leak information about visited domains.
Consequently, to preserve user privacy, the inclusion proof
must be delivered by the domain.

If all verifications are successful, the client accepts the
certificate and establishes a secure communication channel
with the domain. Otherwise, the connection is dropped and the
fraudulent certificate constitutes evidence of CA misbehavior.

D. Certificate Renewal

To update a BlockPKI certificate, a requester could create
a new domain contract every time, but she would be charged
for each contract creation. BlockPKI allows requesters to
renew a certificate using the same domain contract that was
used to create it. The requester just transfers funds to the
domain contract. The certificate validity period is automatically
updated and the contract is ready to receive new signatures.
In this way, not only the number of contracts with expired
certificates running on the blockchain is minimized, but the
cost of renewing a certificate is also reduced.

VI. SECURITY ANALYSIS

The adversary can create a fraudulent certificate if and
only if (a) it can compromise i CAs, (b) it can conduct
a successful domain validation with j honest CAs (e.g., by
attacking the CA’s DNS resolution process, or by launching a
MITM attack on a link between the CA and the domain server),
and (c) i+ j ≥ T . We consider that such an attack requires a
tremendous effort from the attacker and goes beyond the scope
of our adversary model. Nevertheless, even if the adversary
succeeds, BlockPKI allows detection of such an attack with
high probability. Clients, while verifying the certificate, have
an inclusion proof of the corresponding transaction in a block.
Clients keeping block headers locally can directly check the
proof.

We tested our three Ethereum contracts for security vul-
nerabilities using the Securify scanner by Tsankov et al. [41].
This allowed us to verify that an attacker cannot freeze or steal
Ether, as it happened in July 2017 with Parity’s multi-signature
wallet, for example.

BlockPKI does not have any single point of failure. Un-
dermining the availability of BlockPKI to a requester or a CA
running a blockchain node requires an adversary to block all
connections to other peer nodes. To block BlockPKI globally,
one needs to launch a 51% attack. If the adversary controls a
significant portion of the network’s computational power but
not the majority of it, she can delay the issuance of certificates,
but eventually all blockchain transactions important for Block-
PKI operation will be included in the blockchain by honest
miners.

An authorized CA could misbehave by sending some
meaningless data as a signature and receiving a payment.
However, such a strategy would not pay off in the long term.
First, each contract specifies which entities are allowed to send
a signature and obtain money in return. If a CA issues invalid
signatures, it will earn a bad reputation and will be avoided
in subsequent certificate issuances. Note that each interaction
with the contract will be committed to the blockchain so
any dishonest behavior of a CA becomes permanently visible.
Second, it is possible to prevent such misbehavior by checking
the validity of the signature in the domain contract itself.
However, this option is not the default approach in our system,
since performing computationally intensive computations, such
as public-key cryptography, in a smart contract running on a
blockchain entails higher usage of nodes’ computational power
and consequently higher costs for the domain owner to obtain
the certificate.

An authorized CA could also simply ignore a certificate
issuance request in which it is listed. This situation is easily
mitigated either by listing a number of authorized CAs greater
than T in the domain contract, as we discuss in Section IX,
or by canceling the unsuccessful request and creating a new
one that does not list the blocking CA. Again, a misbehaving
CA would earn a bad reputation by remaining unresponsive to
issuance requests.

Schnorr multi-signatures are known to be vulnerable to
rogue-key attacks [5]. A malicious CA could choose a key
as a function of that of other CAs in such a way that it
can then forge a multi-signature. This attack is prevented by
requiring signers to prove knowledge of their own secret key.

That property is respected in BlockPKI as CA certificates are
self-signed and known in advance by clients.

VII. REALIZATION IN PRACTICE

Although our implementation of BlockPKI is based on the
Ethereum blockchain, most of the concepts we have presented
so far are blockchain agnostic and could be implemented
on any other decentralized platform that supports sufficiently
expressive smart contracts. Ethereum [45] is a blockchain-
based platform mainly aimed towards running smart contracts.
Since its launch in July 2015, it became the second most
popular cryptocurrency with a total market capitalization of
more than $20B, as of September 2018 [11]. Transaction
cost in Ethereum depends on the amount of computation
performed by the smart contract (triggered by a transaction).
Each operation (e.g., addition or storing a byte in a contract)
has a constant cost expressed in gas units [45]. However, the
gas cost expressed in the Ethereum’s currency (i.e., ether)
varies. A transaction sender specifies how much she is willing
to pay for the gas used. The price implicitly determines the
priority of the transaction, as miners are compensated with the
cost of used gas in a block they have mined.

We implemented all contracts (i.e., the central, domain,
and storage contracts) in Solidity (version 0.4.7), a Turing-
complete programming language whose syntax is similar to
that of JavaScript. Certificates are encoded in JSON format
(an example is presented in Listing 1). To implement the
Schnorr signature scheme, we used Bitcoin’s C elliptic curve
library [18] together with its Python bindings [19]. We used
secp256k1 as the default elliptic curve for our implementation.
As a hash function for Schnorr signatures we used SHA256;
the Ethereum blockchain uses Keccak-256. Nonces required
by the Schnorr algorithm were generated deterministically as
described in RFC 6979 [33].

The requester implementation consists of two modules:
(a) a Go implementation of an Ethereum full node (Geth,
version 1.5.5 [12]), and (b) a Python application that communi-
cates with the local node (using the Web3.py library [20]). The
latter module is used to automate the process of requesting and
creating certificates. The application takes certificate parame-
ters and creates the transaction calling the createDomain-
Contract method of the central contract (see Listing 2).
After the domain contract is created, the application observes it
and listens for the allCertSignaturesGathered event,
which informs that co-signing of the certificate is finished
(see Listing 4). When a block with this event appears, the
application reads all partial signatures from the contract and
merges them. Then, the transaction with certificate data is sent
to the storage contract. To ensure that the transaction is not
overridden, the requester waits for a few confirmation blocks
before obtaining the proof of inclusion. In the current de-
ployment of Ethereum, 12 confirmation blocks is a commonly
accepted standard [9].

CAs, similarly to requesters, run Ethereum nodes using
Geth, and implement a Python application to communicate
with it. CAs observe the central contract and wait for the
newDomainContract event. When the event is triggered,
each CA checks whether it is listed as an authorized CA.
If so, the CA performs domain validation, as specified by

0

10

20

30

40

50

60

70

<1 1–2 2–3 3–4 4–5

(a) T = 2

0

10

20

30

40

50

60

70

<1 1–2 2–3 3–4 4–5

(b) T = 5

0

10

20

30

40

50

60

70

<1 1–2 2–3 3–4 4–5

(c) T = 10

0

10

20

30

40

50

60

70

<1 1–2 2–3 3–4 4–5

(d) T = 20

Fig. 3: Certificate issuance time distribution (minutes on the x-axis, % on the
y-axis), for different thresholds.

the ACME specification (see Section II-C). If the verifica-
tion succeeds, the CA deterministically generates a private-
public nonce pair from certificate data encoded in the JSON
format with alphabetically sorted keys. Then, it submits
the public nonce to the domain contract and waits for the
allCertNoncesGathered event. Once the event is re-
ceived, the CA reads the nonces of the other authorized CAs
and sends its partial Schnorr signature to the domain contract.

VIII. EVALUATION

We evaluated BlockPKI on the Ropsten test network, which
is the default Ethereum development environment. This test
network provides the same functionalities and characteristics
as the main network, but the ether on Ropsten has no monetary
value. To conduct experiments, we created a setting with up
to 20 CAs, a requester (and its servers), and a client. CAs and
the requester are running the scripts described in Section VII.
The client software was run on a commodity machine with an
Intel Core i5-2410M 2.30GHz processor, 4GB of RAM, and
Ubuntu 16.04.

A. Time Required for Issuing a Certificate

First, we examine the time needed to obtain the certificate
using BlockPKI, and how the threshold number T of the
required CAs affects certificate creation time. To highlight the
actual effect of parameter T , we conducted measurements in
a setting where the requester obtains the inclusion proof just
after a block with his transaction is mined (without waiting for
any block confirmations). The obtained results are presented in
Figure 3. The duration, in most cases, is less than two minutes
and varies only slightly with the number of required CAs.
When taking into account the delay caused by waiting for 12
blocks, the average issuance duration would increase by three
minutes, since block creation in Ethereum takes around 15
seconds on average [13].

The required time is greatly influenced by the frequency
of blockchain updates. The process of gathering signatures
requires at least four blocks. In the best-case scenario, the
first block already contains the transaction that creates a new
domain contract, so that all CAs can notice a pending cer-
tificate request. Gathering signatures involves two rounds, one
for gathering nonces and one for obtaining partial signatures.

C
o

s
t
[e

th
e

r]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Threshold

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Domain Contract Transaction Fees Storage Contract

Fig. 4: Certificate creation cost, in function of the threshold T , including the
creation of the domain contract, the cumulated fees of all transactions sent
from CAs and the transaction to the storage contract.

Each round can start only when the previous round is over.
Assuming that domain verification is performed before the next
block is found, CAs may broadcast their transactions with the
public nonces and have the transactions included in the second
block. Once all nonces are embedded in the blockchain, CAs
may put their partial signatures in the third block. Then, one
additional block is needed to put the requester’s transaction
with certificate data into the blockchain.

As our results show, the broadcast transaction is rarely put
in the very next block. Usually, it is included in the second
or the third one, because network latency plays an important
role in blockchains with small block times. For comparison,
Bitcoin blocks are mined every 10 minutes [36].

B. Cost of Issuing a Certificate

We now investigate the cost of using BlockPKI in
Ethereum. For the evaluation, we set the cost of gas to
20 Gwei, which is above the average price for gas in
Ethereum [13]. Figure 4 shows the linear increase of cost in
function of the number of CAs involved in creating a certifi-
cate. The cost we measure is the total fee of all transactions
sent during creation of the certificate (without compensations).
The first—and most expensive—transaction is initiated by the
requester and results in the creation of a domain contract.
The contract code remains the same for each request, but the
content of its variables may differ. For the evaluation we used a
32-byte domain public key and 14-byte domain name. The next
transactions are sent by CAs; each CA sends two transactions,
so in total 2T transactions are broadcast by the CAs. The last
transaction is sent by the requester to the storage contract.

As domain contracts are reused for certificate renewal,
requesters do not pay again for the creation of the domain
contract, but only for transaction fees (see Figure 4). Apart
from domain contracts created for each certificate request, the
central contract and the storage contract are also present in the
blockchain. The one-time cost of creating the central contract
and the storage contract is negligible. Their creators do not
have any privileges in BlockPKI.

We conduct our cost evaluation in a conservative setting,
but some modifications could lower the costs. For example,
we could move the system to Ethereum Classic, an alternative
version of the Ethereum blockchain. At the time of writing,
the price of ether on Ethereum Classic oscillates around 11
USD, which is roughly 20 times lower than the price on

2 CAs 5 CAs 10 CAs 20 CAs

[ms] % [ms] % [ms] % [ms] %

key combination 0.036 17 0.042 19 0.046 20 0.052 24
block inclusion 0.073 34 0.069 32 0.078 33 0.067 30
signature verif. 0.105 49 0.108 49 0.109 47 0.102 46

TABLE I: Duration of certificate verification steps.

Ethereum. The price of gas in ether is roughly equal on both
blockchains, thus we could decrease the costs by a factor of
20. However, Ethereum Classic has a slower hash rate than that
of Ethereum [17], which means that launching a 51% attack
is proportionally easier.

C. Time Required for Verifying a Certificate

Another aspect we investigate is the computation overhead
on the client side. We again examine this factor with respect
to the threshold number T of CAs. The measurements were
performed on the commodity computer described earlier. Each
measurement was repeated 100 times and the average value of
all 100 samples was taken as a result.

As Table I shows, the signature verification time is little
influenced by T . Thanks to the Schnorr multi-signature, the
signature verification with a combined key does not differ
from the standard verification of a single Schnorr signature.
The time needed to combine the keys increases as the number
of keys increases. Nevertheless, key combination accounts for
17% of the total time when T = 2, and for 24% when T = 20,
so the difference is unnoticeable from the user’s perspective.
Verifying the inclusion proof takes about one third of the total
time. Ethereum uses Patricia trees [8] (a variant of Merkle
trees) for including transactions in blocks. For the evaluation
we used a block containing 10 other transactions, a commonly
observed number of transactions in a block on the Ethereum
main network [13]. Finally, the verification of the merged
signature proceeds in constant time and takes about 0.1 ms.

IX. DISCUSSION

For the sake of simplicity, we assumed that certificates
are always signed by T CAs. However, it would be possible
for a requester to list in his domain contract a number of
authorized CAs greater than T . The contract would ensure
that only T CAs contribute to the multi-signature by accepting
the first T nonces and disallowing CAs that did not include
a nonce to send signatures. More authorized CAs implies a
possibly faster issuance of signatures as only the first T CAs
would be able to co-sign the certificate and receive financial
compensations, thus CAs would have a strong incentive to
conduct the domain verification process as fast as possible.
On the other hand, if the requester includes many CAs,
then the cost of creating such a contract becomes higher (as
the requester must pay for the additional storage needed to
hold the CAs’ blockchain addresses and the table with their
compensations). As we expect BlockPKI-compatible CAs to
respond to valid certificate issuance requests in a large majority
of cases (since they are financially rewarded for doing so), it
is probably best for requesters to list exactly T accepted CAs,
unless experience proves it is desirable to do otherwise. It is
also possible for a requester to use a value of T greater than
the value commonly used by browsers. Such a change would

make a certificate more resilient, as revoking one CA would
not invalidate all the certificates it has issued. Such a high-
resilience, high-security certificate would naturally be more
expensive, however.

Root CAs, which are directly trusted by the browser or
OS, rarely sign domain certificates directly. Instead, they sign
intermediate CAs, which in turn issue domain certificates.
Although, for presentation purposes, we simplified the usual
CA hierarchy, BlockPKI supports longer certificate chains (i.e.,
with intermediate CAs). To request a certificate, the requester
does not have to specify a particular intermediate CA. It is
sufficient to include the blockchain address of a root CA in
the domain contract. Thereafter, all intermediate CAs can use
the same blockchain account to send their partial signatures. If
a certificate in BlockPKI is signed by intermediate CAs, then
the domain owner must provide its clients with the chain of
trust up to the root CAs, as well as proofs of key possession
(to prevent rogue-key attacks). Browsers first verify whether
the intermediate CAs are trusted and then verify the certificate
(as described in Section V-C) using the public keys of the
intermediate CAs that signed the certificate.

By automating all operations, we facilitate the usage of
short-lived certificates, which reduce the attack window in
the event where a certificate would be illegitimately issued.
Although it is hard to determine what the optimal certificate
validity period would be in practice, we envision BlockPKI
certificates to have a lifetime of around 90 days initially, as
is currently the case with Let’s Encrypt. Short-lived, multi-
signed certificates greatly reduce the need for a revocation
system, but do not completely suppress it. Given that designing
a satisfactory revocation system has proven to be an extremely
challenging task [25, 38, 39], we consider it to go beyond the
scope of this paper. Nevertheless, the security of BlockPKI
can be further improved by combining it with any existing
revocation scheme.

X. RELATED WORK

Several existing systems rely on blockchains to provide
PKI functionalities. For instance, Namecoin [30] allows users
to register a name and attach data, such as a public-key finger-
print, to that name. Namecoin has its own dedicated namespace
(.bit top-level domain), which is resolved using the Name-
coin infrastructure (without involving DNS). CertCoin [16] is
an improvement over Namecoin, which reduces the amount
of storage necessary to use the system, and introduces key
revocation and recovery functionalities. In Ethereum, the res-
olution of human-readable names into identifiers of digital re-
sources (for example blockchain addresses of smart contracts)
is provided by the Ethereum Name Service [21]. In contrast to
previous systems, such as Namecoin or CertCoin, BlockPKI
allows domain owners to obtain certificates for standard DNS
names.

BKI [43] is a blockchain-based PKI that involves an
adjustable number of CAs to issue certificates, but it does not
make use of multi-signatures to make certificate verification
more scalable (as BlockPKI does). Moreover, BKI requires
that all clients contact a third party (a “blockchain-based log
maintainer”) during certificate verification, which is problem-
atic for latency and privacy reasons. BlockPKI also improves

upon BKI by allowing CAs to get remunerated automatically
through smart contracts. SCPKI [2] is another blockchain-
based PKI, but it departs from the CA model used by TLS
and relies instead on a web-of-trust model to solve a range
of identity-related problems. Doing away with CAs entirely
to instead rely upon individuals to certify the authenticity of
public keys is a model that may be appropriate for user-to-user
interactions, but it is not adapted to today’s web. Therefore,
the assumptions and objectives underlying SCPKI are vastly
different from those of BlockPKI.

As an enhancement to the standard web PKI, Google
developed Certificate Transparency (CT) [23] to detect targeted
attacks by making all the certificates submitted to their log
servers publicly visible. To work effectively, CT requires that
every certificate is accompanied by a signed statement that a
log has received the certificate (and will add it to its store).
Logs in CT must be highly available as they are necessary for
issuing certificates. Moreover, CT does not provide any attack
prevention as it is designed exclusively for attack detection.
AKI [22] and its successor ARPKI [4] rely on certificate logs
similar to CT’s, but provide additional security guarantees:
they employ multi-signature certificates signed by n CAs, and
aim at protecting users from an adversary who would be able
to compromise up to n− 1 CAs. These systems rely on log
servers whose availability is crucial for standard operations.
Moreover, AKI and ARPKI lack an automated framework for
requests and payment.

The monitoring of log systems is another important aspect
investigated by previous work. Chuat et al. [10] and Nordberg
et al. [31] have proposed systems for TLS clients to gossip
about certificate logs (using regular web traffic). Leveraging a
blockchain to monitor public logs was proposed by Bonneau in
EthIKS [7]. The system’s objective is to enhance auditability
of the CONIKS system [28], which is a log-based end-user
key verification service. In CONIKS, users are required to
monitor the correctness of their own data in the repository
or trust a third party to perform the audit on their behalf.
EthIKS, by incorporating CONIKS data structures in a smart
contract and relying on the Ethereum network to enforce
honest handling of the repository, reduces the trust put on
other users or third-party auditors. IKP [27] introduces a
blockchain-based system that provides financial incentives for
detecting fraudulent certificates. The system leverages smart
contracts, allows domain owners to specify their trusted CAs,
and allows CAs to create an escrowed insurance fund to protect
against CA misbehavior. Anyone who can find a certificate
non-compliant with a domain policy can be compensated by
the CA’s insurance.

Catena [40] proposes a blockchain implementation of a
log system that is accessible to lightweight blockchain clients.
It leverages Bitcoin’s double-spending prevention mechanism.
Each Catena log statement is put into a Bitcoin transaction.
Clients verify the existence of transactions using a light client
protocol in Bitcoin (called Simplified Payment Verification).
Consequently, the equivocation of the log is equivalent to
double-spending, which in turn is as hard as forking the Bitcoin
blockchain.

Notaries [26, 44] can help detecting MITM attacks with
multi-path probing. By contacting notary servers, clients can
verify whether a domain’s certificate is also observed from a

set of vantage points. The notary server contacts the domain
and forwards its view of the domain’s certificate to the client.
Unfortunately, contacting a notary service introduces signifi-
cant latency, and the achieved level of security is hard to assess
without any mechanism for detecting malicious notary servers.

CoSi [37] proposes an efficient way of using multi-
signatures to co-sign statements issued by CAs. Each statement
needs to be co-signed by a threshold number of witnesses
in order to be accepted by clients. Consequently, even if an
attacker compromises an authority, all malicious statements
need to be publicly exposed before they can be used for
an attack. However, CoSi requires coordination in the co-
signing protocol and relies on direct communication between
witnesses. BlockPKI does not rely on those assumptions, as
it still works effectively when signers do not communicate
directly with each other. Furthermore, CoSi’s security is still
only as strong as the weakest link, as witnesses only approve
the statements issued by CAs [37] and do not conduct a full
domain validation themselves. An attacker could still exploit
vulnerabilities, in BGP for example, to hijack traffic destined
to a victim’s domain [6].

In opposition to existing approaches, BlockPKI is, to the
best of our knowledge, the first PKI to (a) require that multiple
CAs perform a complete domain validation from different
vantage points for an increased resilience to compromise and
hijacking, (b) scale to a high number of CAs by using an
efficient multi-signature scheme, and (c) provide a framework
for paying multiple CAs automatically.

XI. CONCLUSION

We observed that blockchains and smart contracts lend
themselves to a novel PKI design that does not rely on
any globally trusted entities. Our implementation in Ethereum
demonstrates the viability of the approach. Our system is
conceptually simple, yet achieves several surprising and de-
sirable properties: fully autonomous operation, the creation of
a malicious certificate requires compromising a large number
of trusted entities and still becomes globally visible, and CAs
have a viable business model where they are compensated
for their validations and signatures. We hope that BlockPKI
constitutes a worthwhile contribution in the quest towards a
highly secure and usable PKI.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement 617605. We gratefully acknowledge
support from ETH Zurich and from the Zurich Information
Security and Privacy Center (ZISC). Pawel’s work was sup-
ported by the SUTD SRG ISTD 2017 128 grant.

REFERENCES

[1] J. Aas. Launching our crowdfunding campaign. https://perma.cc/5DXM-
PMY8, November 2016.

[2] M. Al-Bassam. SCPKI: a smart contract-based PKI and identity system.
In Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies,
and Contracts. ACM, 2017.

[3] R. Barnes, J. Hoffman-Andrews, and J. Kasten. Automatic certificate
management environment (ACME). IETF draft, August 2018.

[4] D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig, R. Sasse, and P. Sza-
lachowski. ARPKI: Attack Resilient Public-Key Infrastructure. In
Proceedings of the ACM Conference on Computer and Communications
Security (CCS), 2014.

[5] M. Bellare and G. Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In Proceedings of the ACM conference on
Computer and Communications Security (CCS), 2006.

[6] H. Birge-Lee, Y. Sun, A. Edmundson, J. Rexford, and P. Mittal. Bam-
boozling certificate authorities with BGP. In Proceedings of the USENIX
Security Symposium, 2018.

[7] J. Bonneau. EthIKS: Using Ethereum to audit a CONIKS key trans-
parency log. In Proceedings of the International Conference on Financial
Cryptography and Data Security, 2016.

[8] E. Buchman. Understanding the Ethereum trie. https://perma.cc/22C3-
BAMB, June 2014.

[9] V. Buterin. On slow and fast block times. https://perma.cc/8556-WSRV,
September 2015.

[10] L. Chuat, P. Szalachowski, A. Perrig, B. Laurie, and E. Messeri. Efficient
gossip protocols for verifying the consistency of certificate logs. In
Proceeding of the IEEE Conference on Communications and Network
Security (CNS), 2015.

[11] CoinMarketCap. Cryptocurrency market capitalizations. https://
coinmarketcap.com.

[12] Ethereum. Official Go implementation of the Ethereum protocol.
https://geth.ethereum.org/.

[13] Etherscan.io. Ethereum charts & statistics. https://etherscan.io/charts.
[14] A. P. Felt, R. W. Reeder, A. Ainslie, H. Harris, M. Walker, C. Thompson,

M. E. Acer, E. Morant, and S. Consolvo. Rethinking connection security
indicators. In Proceedings of the Symposium on Usable Privacy and
Security (SOUPS), 2016.

[15] D. Fisher. Apple pushing developer toward HTTPS connections from
apps. https://perma.cc/6QGZ-AQAB, June 2015.

[16] C. Fromknecht, D. Velicanu, and S. Yakoubov. A decentralized public
key infrastructure with identity retention. IACR preprint, 2014.

[17] Gastracker.io. Ethereum classic block explorer. https://gastracker.io/.
[18] GitHub. Bitcoin secp256k1 curve library. https://github.com/bitcoin-

core/secp256k1.
[19] GitHub. Python FFI bindings for secp256k1. https://github.com/ludbb/

secp256k1-py.
[20] GitHub. Web3.py library. https://github.com/pipermerriam/web3.py.
[21] N. Johnson. Ethereum domain name service. EIP 137, April 2016.
[22] T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and V. Gligor.

Accountable key infrastructure (AKI): A proposal for a public-key
validation infrastructure. In Proceedings of the ACM International
Conference on World Wide Web (WWW), 2013.

[23] B. Laurie, A. Langley, and E. Kasper. Certificate transparency. RFC
6962, June 2013.

[24] Let’s Encrypt. Statistics. https://letsencrypt.org/stats/.
[25] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs, A. Mis-

love, A. Schulman, and C. Wilson. An end-to-end measurement of
certificate revocation in the web’s PKI. In Proceedings of the ACM
Internet Measurements Conference (IMC), 2015.

[26] M. Marlinspike. SSL and the future of authenticity, 2011.
[27] S. Matsumoto and R. M. Reischuk. IKP: Turning a PKI around with

blockchains. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2017.

[28] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J.
Freedman. CONIKS: Bringing key transparency to end users. In
Proceedings of the USENIX Security Symposium, 2015.

[29] G. Merzdovnik, K. Falb, M. Schmiedecker, A. G. Voyiatzis, and
E. Weippl. Whom you gonna trust? A longitudinal study on TLS notary
services. In Proceedings of the IFIP Annual Conference on Data and
Applications Security and Privacy, 2016.

[30] Namecoin. https://namecoin.org/.
[31] L. Nordberg, D. K. Gillmor, and T. Ritter. Gossiping in CT. Internet

draft, January 2018.
[32] K. Ohta and T. Okamoto. Multi-signature schemes secure against active

insider attacks. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 82(1):21–31, 1999.

[33] T. Pornin. Deterministic usage of the digital signature algorithm (DSA)
and elliptic curve digital signature algorithm (ECDSA). RFC 6979, 2013.

[34] E. Schechter. Moving towards a more secure web. https://perma.cc/
598B-KHQ4, September 2016.

[35] C.-P. Schnorr. Efficient identification and signatures for smart cards. In
Conference on the Theory and Application of Cryptology, 1989.

[36] Smartbit. Time between blocks. https://www.smartbit.com.au/charts/
block-interval.

[37] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford. Keeping authorities “honest or bust”
with decentralized witness cosigning. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2016.

[38] P. Szalachowski, L. Chuat, T. Lee, and A. Perrig. RITM: Revocation
in the middle. In Proceedings of the IEEE International Conference on
Distributed Computing Systems (ICDCS), 2016.

[39] P. Szalachowski, L. Chuat, and A. Perrig. PKI safety net (PKISN):
Addressing the too-big-to-be-revoked problem of the TLS ecosystem. In
Proceedings of the IEEE European Symposium on Security and Privacy
(Euro S&P), 2016.

[40] A. Tomescu and S. Devadas. Catena: Efficient non-equivocation via
Bitcoin. In Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2017.

[41] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and M. Vechev.
Securify: Practical security analysis of smart contracts. arXiv preprint,
August 2018.

[42] T. Vyas. No more passwords over HTTP, please! https://perma.cc/
99MC-VSFY, January 2016.

[43] Z. Wan, Z. Guan, F. Zhuo, and H. Xian. BKI: Towards accountable and
decentralized public-key infrastructure with blockchain. In Proceedings
of the International Conference on Security and Privacy in Communi-
cation Networks (SecureComm), 2017.

[44] D. Wendlandt, D. G. Andersen, and A. Perrig. Perspectives: Improving
SSH-style host authentication with multi-path probing. In Proceedings
of the USENIX Annual Technical Conference, 2008.

[45] G. Wood. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper, 2014.

APPENDIX

contract CentralContract :
address [] public createdDomainContracts ;
event newDomainContract (address contractAddr);

function createDomainContract (
certData ,
authorizedCAs ,
compensations):

if suppliedFunds >= sum(compensations):
uint thresholdT = authorizedCAs. length
address contractAddr = new DomainContract (

thresholdT ,
certData ,
authorizedCAs ,
compensations)

createdDomainContracts .push(contractAddr);
newDomainContract (contractAddr);

...

Listing 2: Pseudocode of the central contract.

contract StorageContract :
certificate [] public storedCertificates ;

function storeCertificate (
certData ,
CAs,
signature):

storedCertificates .push(
certData ,
CAs,
signature)

...

Listing 3: Pseudocode of the storage contract.

contract DomainContract :
uint public thresholdT ;
certificate public certData ;
mapping (address => bool) public authorizedCAs ;
mapping (address => uint) public compensations ;
mapping (address => bytes) public certPubNonces ;
uint public certPubNoncesCount = 0;
bool public allCertNonces = false;
event allCertNoncesGathered ();
...

function DomainContract (params):
thresholdT = params . thresholdT
certData = params . certData
authorizedCAs = params . authorizedCAs
compensations = params . compensations

function sendCertPubNonce (certPubNonce):
if sender∈authorizedCAs :

certPubNonces .push(certPubNonce)
certPubNoncesCount ++
if certPubNonces == thresholdT :

new event(allCertNoncesGathered)
allCertNonces = TRUE

function sendCertSignature (certSignature):
if sender∈authorizedCAs & allCertNonces :

certSigs .push(certSignature)
certSigsCount ++
pay(sender , compensations [sender])
if certSigsCount == thresholdT :

new event(allCertSignaturesGathered)
...

Listing 4: Pseudocode of the domain contract.

struct certificate = {
subjectName ,
issuers [],
notBefore ,
notAfter ,
publicKey ,
signature ,
...

}

function verify (domainCert):

cert = new certificate (domainCert . transaction)
block = findBlock (domainCert . blockNo)
root = block. getTransactionRoot ()
incl = domainCert . inclusionProof

combinedKey = 1

for CA in cert. issuers :
if CA in trustedCAs :

combinedKey ∗= CA. pubKey

if(website . domainName == cert. subjectName &&
time.now >= cert. notBefore &&
time.now <= cert. notAfter &&
sigVer (cert , combinedKey) &&
proofMerkle (root , incl)):

output : " accept certificate "
else:

output : " reject certificate "

Listing 5: Pseudocode of the certificate verification process.

