Demystifying Web3 Centralization:
The Case of Off-Chain NFT Hijacking

Felix Stéger!, Anxin Zhou?, Huayi Duan®, and Adrian Perrig?

! ETH Ziirich, Ziirich, Switzerland
2 City University of Hong Kong, Kowloon, HKSAR

Abstract. Despite the ambitious vision of re-decentralizing the Web as
we know it, the Web3 movement is facing many hurdles of centralization
which seem insurmountable in the near future, and the security impli-
cations of centralization remain largely unexplored. Using non-fungible
tokens (NFTs) as a case study, we conduct a systematic analysis of the
threats posed by centralized entities in the current Web3 ecosystem. Our
findings are concerning: almost every interaction between a user and a
centralized entity can be exploited to hijack NFTs or cryptocurrencies
from the wuser, through network attacks practical today. We show that
many big players in the ecosystem are vulnerable to such attacks, plac-
ing large financial investments at risk. Our study is a starting point to
study the pervasive centralization issues in the shifting Web3 landscape.

1 Introduction

We are witnessing a trend of re-decentralizing web services provided by big cor-
porations, which is portrayed as the transition from Web2 to Web3. In this
envisioned Web3 paradigm, decentralized applications (DApps) are hosted on
blockchains and other distributed infrastructures, without relying on any sin-
gle entity for their governance and operation [23]. However, most DApps today
deviate from this idealized model and, somewhat inevitably, employ centralized
components for cost efficiency, performance, and usability. This creates prof-
itable targets for attackers as observed in many real-world incidents [25,12,11].
Such architecture-level attack surface has not received equal attention from the
research community compared with vulnerabilities in the underlying blockchain
protocols [28,18], as we further discuss in Section 2. It is important and urgent
to fill this gap, given the prevalence of centralized entities in the current Web3
ecosystem and their complex interactions with other parties.

We initiate a systematic study of the security issues induced by centralization
in Web3, focusing on the sub-ecosystem around non-fungible tokens (NFTs). The
reason for choosing NFTs as our subject of study is three-fold. First, they are
among the most popular Web3 concepts with a multi-billion dollar market [31].
Second, NFTs establish the fundamental and ubiquitous notion of asset owner-
ship, and therefore they will likely persist even if high market valuations decline.
After the initial standard [17], the Ethereum community has proposed a series
of improvements to bring NFTs closer to a practical realm from usability [3]

2 F. Stoger et al.

and legal perspectives [20]. Last but not the least, the NFT sub-ecosystem is
sufficient to demonstrate common centralization issues, as it involves different
centralized entities that interact with users and decentralized infrastructures in
various ways. We are particularly interested in the security risks arising from
such interactions, as they should not exist in a fully decentralized architecture.

Our work starts with the definition of a functional model that captures the
essential entities in today’s NFT ecosystem and their dynamics for the creation,
tracking, and trading of NFTs. Instantiating this model with concrete architec-
tures that employ different forms of centralization, we systematically examine
vulnerable interactions that can be exploited through practical network attacks
such as BGP or DNS hijacking. As a result, we find that almost every interaction
of a user with a centralized entity leads to an attack that can hijack NFTs or
the associated cryptocurrencies. Such hijacking is off-chain in that it involves no
exploitation of the underlying blockchain or smart contracts. We also examine
the detectability of these attacks. Some of them can be detected and prevented
by prudent inspection of transaction parameters, whereas others require end-
to-end data authentication in a decentralized architecture. We have validated
most of our proposed attacks on OpenSea and a Ethereum testnet. Further-
more, our analysis of real-world service providers show that 6 out of 10 top NFT
marketplaces and many other intermediary services are vulnerable.

Our study of NFTs is just a starting point to investigate the centralization
risks in the broad and shifting Web3 ecosystem. The methodology we developed
in this work is also applicable to analyzing DApps beyond NFTs.

2 Related Work

Research on NFT security. Marlinspike [26] points out that DApps are not
as decentralized as claimed because of their reliance on centralized servers. These
servers can return arbitrary NFT-associated data to users, and marketplaces like
OpenSea can unilaterally remove NFTs from their listings. This indicates a clear
violation of DApps’s fundamental principle that their operation should not be
influenced by any centralized authority. Das et al. [15] examine today’s NFT
ecosystem and several security issues therein, including insufficient user authen-
tication and unverified smart contracts, lack of persistent asset data storage, and
trader malpractices. Wang et al. [33] measure the risks of disconnection between
NFTs and their off-chain assets. Unlike these prior studies that discusses issues
arising from (centralized) entities themselves, we inspect architecture-level vul-
nerabilities rooted in the extra interactions induced by centralized entities, and
our attacks work even if these entities themselves remain uncompromised.

Attacks on DApps. Su et al. [30] analyze common transaction patterns of
DApp attacks and develop a tool to automatically identify security incidents.
Such attacks exploit design or implementation flaws in smart contracts and thus
are orthogonal to the network-based attacks we consider.

As a major class of DApps, decentralized finance (DeFi) aims to remove
traditional financial institutions like banks and exchanges. The transparency

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 3

and high transaction latency of blockchains makes DeFi services subject to,
e.g., front running [14] and sandwiching attacks [34]. Because of their reliance
on centralized components like web servers and blockchain gateways, real-world
DeFi platforms are also susceptible to the attacks presented in this paper.

Recently, Wang et al. [32] quantify the security risks of unlimited approval of
ERC20 tokens that fuel many DApps. Some of our attacks also exploit the fact
that trading NF'Ts requires their owners to delegate control to marketplaces.

Li et al. [24] find that centralized intermediary services used by DApps can
be turned into attack vectors for denial of service (DoS). This demonstrates the
risk of centralization from another interesting angle.

Blockchain Security. Many attacks on blockchains at the consensus [28,18] or
network layer [4,21] have been discovered. In comparison, our work explores a
new class of security threats arising from external entities which are not part
of a blockchain but widely exist for practical reasons. Programming errors in
smart contracts can often lead to vulnerabilities [5]. Different tools have been
developed to find such security bugs [27,22]. These tools, however, cannot detect
our attacks because we do not exploit flaws in smart contracts themselves.

Network Attacks. The Internet’s core building blocks, including the Border
Gateway Protocol (BGP) for inter-domain routing and the Domain Name Sys-
tem (DNS) for name resolution, are not secure by design. In a BGP hijacking
attack, the attacker can maliciously announce the IP prefix of an autonomous
system (AS) and thereby hijack its inbound network traffic; as for DNS, an
off-path attacker can inject bogus data into a DNS server’s cache and direct
clients to malicious servers. These attacks in turn allow the subversion of a wide
range of online systems [13], including public key infrastructures (PKIs) which
underpin the widely deployed Transport Layer Security (TLS) protocol [29].
Unfortunately, security extensions to BGP and DNS, e.g., RPKI, BGPsec, and
DNSSEC, have not received widespread deployment [19,10]. Therefore, network-
based attacks are still practical and prevalent in today’s Internet.

3 Modeling NFT Functionality

Despite the variety of entities in the current NFT ecosystem, they implement
a common set of functions revolving around the creation, tracking, and trading
of NFTs. We define a functional model to capture these essential functions and
then instantiate it with concrete architectures for detailed security analyses.
As depicted in Figure 1, our model contains three types of users that interact
with three services—ownership registry, asset storage, and NFT marketplace
(NFTM)—via predefined interfaces. This model captures the typical life cycle of
NFTs seen today, allowing us to systematically uncover vulnerable interactions
involving different centralized entities.

4 F. Stoger et al.

Users Asset Storage | Assets Services

Retrieve: fetch asset | (tokenURI, asset)
Store: store asset (tokenURI, asset’)
_ e e - - _—__—_—- - 7

Ownership Registry NFT Records '
Register: create NFT (TID, OID, tokenURI, delegatee)

—®- !
4@* Transfer: update OID (TID', OID!, tokenURI, delegatee’) :
@ Delegate: update delegatee = :
@~ X
@,

| Read: read tokenURI

NFTM Orderbook
List: offer NFT for sale Buy Orders Sell Orders
Accept: accept bid TID, bid, buyer, aux | TID, ask, seller, aux

(3L | Browse: fetch orderbook| TID', bid', buyer, aux'[TID' ask, seller! aux’
@7 (D) | Purchase: buy NFT - -
€0) - B

| Bid: bid in auction

Fig. 1: Our model to capture the essential interactions (arrows) between different
users (left) and services (right) commonly found in the current NFT ecosystem.

3.1 Data and Interfaces

Each service exposes a set of interfaces for users to access and modify its data
(illustrated in the dashed boxes in Figure 1).

Ownership Registry. In essence, NFTs are ownership records of digital or
physical assets, and these records are stored in a (ideally) permanent ownership
registry. Each record is defined by 4 fields. The first and foremost is TID, which
uniquely identifies an NF'T; in practice, this is implemented by pairing a globally
unique smart contract address and a locally unique token index. The other three
fields are: 0ID identifying the token’s owner, tokenURI pointing to the underlying
asset, and delegatee identifying an entity who can control the token on behalf
of its owner. The registry exposes four interfaces: (1) Register to create a new
record with all fields except delegatee properly initialized to non-empty values,
(2) Transfer to change the owner of a token by updating its 0ID and clearing
the delegatee field, (3) Delegate to set the delegatee for a token, and (4) Read
to retrieve a record for a given TID. We explain several technicalities below.

The NFT standard EIP-721 [17] specifies only the Transfer and Delegate
functions in our model. Our additional Register and Read explicitly describe the
actions to (1) create NFTs and (2) read NFTs from the ownership registry. This
allows us to identify subtle vulnerabilities that otherwise stay concealed. Another
remark is that, in practice, tokenURI might not reference the asset directly, but
instead a separately stored metadata object that contains a further pointer to
the actual asset. This extra layer of indirection may increase the attack surface
as well, but we refrain from overcomplicating our model with this subordinate
interaction whose functions are already subsumed by the major interfaces. We

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 5

further assume that once an NFT is created, its tokenURI cannot be updated.
Finally, we do not consider the possible destruction of an NFT.

Asset Storage. The underlying data associated with NFTs is maintained in
an asset storage. We consider a simple yet realistic storage model consisting of
(tokenURI, asset) pairs and two interfaces to store and retrieve assets. Unlike
the ownership registry that is hosted on a blockchain by default, practical asset
storage systems are almost always off-chain for cost and performance reasons.

NFTM. NFTs must be tradable to create value. This necessitates an NFTM
that connect buyers and sellers. The essential data maintained by an NFTM
is an orderbook that keeps track of sell and buy orders. Each order contains
a token identifier, a bid/ask price, the order’s issuer, and some marketplace-
specific auxiliary information (e.g., sale duration) not relevant to our security
analyses. An NFTM provides 5 interfaces to users: (1) List for a seller to offer a
token for sale, (2) Accept for a seller to accept a buy order or a bid, (3) Browse
for users to read the catalog of tokens for sale, (4) Purchase for a buyer to
buy a listed token, and (5) Bid for a buyer to bid on a token in auction. The
NFTM updates its orderbook according to these actions and process a ownership
transfer transaction whenever a buy order matches a sell order.

3.2 NFT Life Cycle

Users can take three roles: creator, seller, or buyer. We describe a typical NFT life
cycle through users’ interactions with the necessary services. We use the notation
@ action(in — out) to represent the invocation of an interface action, which
takes in as input from and returns out to the caller. The in or out parameters
can be empty. We also omit non-critical data in some invocations.

Creation. The creator of an NFT can vary, for example an artist creating the
digital asset, or a party entrusted by the asset creator with the task of tokenizing
the asset. We do not distinguish these cases. To start with, the creator uploads
an asset to the asset storage by calling Store(asset — tokenURI). With
the returned tokenURI, it then creates a token by calling Register({0ID,
tokenURI} — TID), which stores a new record in the ownership registry.

Listing. The owner of a token offers it for sale through List({TID, OID, ask}
—). The invoked marketplace needs permission to transfer the token without the
seller’s further involvement. This is done via (2B) Delegate({TID, Mkt} —), which
sets the delegatee of token TID as the marketplace identified by Mkt.

Trading. A buyer interacts with all three service providers to buy an NFT. It
starts by retrieving available sell orders from the marketplace via Browse(—
{TID, ask, seller}). Here we assume only a single sell order is returned. To ex-
amine the associated asset, the buyer first gets the token’s metadata by calling
Read(TID— tokenURI) from the ownership registry and then fetches the asset
by calling (3C) Retrieve(tokenURI— asset) from the storage provider. Market-
places normally offer two buying options: direct purchase or auction. In the for-
mer case, the buyer directly offers the asked price and calls Purchase({TID,

6 F. Stoger et al.

ask, buyer} —). In the latter case, the buyer places a bid via Bid({TID,
bid, buyer} —), which results in a buy order stored in the NFTM’s orderbook.
Upon a successful sale, the NFTM transfers the token to the new owner by
calling (3E) Transfer({TID, buyer} —) without the seller’s involvement. This is
legitimate because the NFTM has been approved by the seller in advance.

4 System Architecture & Attack Taxonomy

We consider four instantiations of our NFT model that exist (or could exist) in
practice. The first one is a fully decentralized architecture where all services are
hosted by decentralized infrastructures and all users acces them through their
own infrastructure nodes. Each subsequent architecture centralizes one service—
that is, the service is either accessed by users through a centralized intermediary
(CI), or otherwise hosted centrally and controlled by a single entity. Such cen-
tralization creates vulnerable links that can be intercepted to manipulate data
communicated between users and services, enabling various attacks to hijack
NFTs or cryptocurrencies from different users as summarized in Table 1.

Threat Model. We consider an off-path network adversary who is capable of in-
tercepting communication between a user and a centralized entity through BGP
or DNS hijacking. Even if the communication is secured by TLS, the adver-
sary can still acquire a fraudulent certificate to impersonate the victim domain
owned by a centralized entity [29]. We assume that decentralized infrastructures
themselves, including blockchains and decentralized storage systems, are secure
against the adversary, and that their data is always tamper-proof. For example,
the adversary cannot attack their underlying consensus mechanisms [18,28] or
prevent their users from retrieving data from honest nodes.

4.1 Architecture Type I: Fully Decentralized

In a fully decentralized architecture, the ownership registry and NFTM func-
tions are implemented by smart contracts. Users access these services by sending
blockchain transactions that encode function calls to these contracts. The asset
storage can be on a blockchain or an off-chain storage system like IPF'S or StorlJ.
We focus on IPFS as it is the de-facto standard decentralized storage system
used by many DApps. In IPFS, a file is indexed by a content identifier (CID), a
cryptographic token used to retrieve the file and verify its integrity.

Users in this architecture rely on their own blockchain and optionally IPFS
nodes to access different services. We do not distinguish between a full blockchain
node and a light client [8], because both of them allow a user to verify on-chain
data. This idealized (yet still practicall) architecture requires users to use some
specialized explorer software to retrieve, organize and render data (e.g., NFTM
listings and orderbook) via their local nodes, without depending on any external
web services that are prevalent today.

Security. In this architecture, users can locally validate all data they receive
from the three services and all actions they perform. In interactions and

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 7

Table 1: A summary of potential NFT hijacking attacks in different architec-
tures. The third column indicates whether and how a user can detect attack
attempts. Level 1: the user must carefully audit the transaction parameters
to be signed to detect an attack attempt. Level 2: the user must obtain some
authenticator (e.g., cryptographic digest or digital signature) for the rele-
vant data (received from a centralized entity) in a secure way (e.g., through
a decentralized infrastructure that the user is part of) and verify the data
to detect an attack attempt. Level 3: the victim can detect the attacks only
retrospectively after it notices the financial loss.

Attacks Architecture Detectability Outcome

Al: Type 11 2/3* NFT created with attacker-controlled asset
A2: @0 Typell 2/3% Wrong NFT bought by buyer
A3: 10 Type III 3 Royalty paid to attacker
A4: Type 111 1 NET sold to attacker at a low price
A5: Type 111 1 NFT transferred to attacker

Increased chance to buy attacker’s NF'T
Al Type IIT 2R Higher bids placed by buyer than necessary
AT: Type 111 2 Wrong NFT bought by buyer
A8: (3C?) Type III 2 Wrong NFT bought by buyer

Funds stolen from buyer
AD: Type 1 1 Wrong NFT bought by buyer
A10: Type III 1 Buyer’s bid amount increased by attacker
A11: Type 111 1 Funds stolen from buyer

A12: (3B): Type IV 3 Wrong NFT bought by buyer

* 2 if IPFS or blockchain, 3 if centralized storage
** 2 if on-chain orderbook, 3 if centralized access or off-chain orderbook

(3B), a user can read integrity-protected data from the blockchain through its
local node. Interactions (1B), BE), (2B), 24), (2C), 3D), and are implemented
by blockchain transactions cryptographically signed with the user’s private key
and so they cannot be tampered with. If the asset storage is on-chain, users can
verify the integrity of assets in interaction and (30); in the case of IPFS,
users can also verify retrieved assets using their CIDs. To conclude, this archi-
tecture exposes no extra user interaction that can be exploited by our network
attacker. Even if an attacker can intercept the communication between a user
and other nodes in a decentralized infrastructure, it cannot alter the data unde-
tected thanks to the infrastructure’s built-in end-to-end data authentication.

4.2 Architecture Type II: Centralized Asset Storage

To lower the barriers to entry and reduce operational costs (e.g., the high gas fee
in Ethereum), NFT participants in practice offer and use the services defined by
our model in various centralized forms. We start by analyzing the asset storage.

Centralized Access. Even if many NFT assets nowadays are stored on a decen-
tralized infrastructure by default, most users access them through Blockchain as

8 F. Stoger et al.

a Service (BaaS) providers (e.g., Infura) or IPFS gateways [1]. These CIs provide
convenient APIs as a service for users to access a decentralized infrastructure
without running their own nodes. As the price of such convenience, however,
users must trust these Cls for the authenticity of any received asset data.

For the case of IPFS, it may appear that end-to-end data authentication
is still possible with assets’ CIDs. However, data integrity verification is rarely
implemented outside IPFS nodes. Moreover, IPFS gateways normally do not
provide all the parameters® needed for data verification to users.

Centralized Hosting. Despite the pursuit of decentralization by NFT partic-
ipants, it is not uncommon that NFT assets are hosted directly on centralized
systems [26]. For example, the Otherside project (otherside.xyz), whose NFTs
have a sale volume of over 600K ETH, stores asset files on traditional web servers.
Unlike decentralized storage, these centralized systems (including cloud storage)
provide only simple checksum mechanisms for the detection of data corruption
at best. An attacker capable of manipulating a file in transit can also forge its
checksum®. Hereafter, we assume that end users cannot verify the authenticity
of data received from a centralized storage system.

Attacks. We present attacks against interactions and BC) (see Figure 1).
Both attacks arise from the loss of data verifiability due to centralized access or
hosting of asset storage. We highlight the data modified by each attack in red.

Al: Store(asset — tokenURI). This attack aims to trick a creator into as-
sociating a new NFT with an unexpected asset. Specifically, the attacker can
intercept the creator’s communication with a CI for decentralized asset storage
or directly with a centrally hosted asset storage, and then surreptitiously modify
the returned tokenURI. As a result, the tokenURI included by the creator in a
subsequent call to Register will reference an attacker-chosen asset.

A creator should normally delete its local copy of the asset file only after
the file is uploaded successfully via Store(). This gives the creator chances to
validate a received tokenURI, but such validation is indeed futile. For two of the
three architecture variants, centralized access to on-chain assets and centrally
hosted asset storage, the attacker can again intercept the creator’s validation
attempt to retrieve the asset file indicated by the fake tokenURI, misleading
the creator with a false sense of security. For the case of centralized access to
decentralized storage, the aforementioned limitations of IPFS mean that data
verification (using CID) by end users is still not practical.

A2: Retrieve(tokenURI— asset). This attack deceives a buyer into purchasing
a low-value NF'T sold by the attacker, mistakenly believing it to be a high-value
one. NFTs by the same creator are generally organized into a collection (e.g.,
Bored Ape Yacht Club) and have varying values. When a target buyer retrieves
an attacker’s “bait” asset from a CI or centrally hosted asset storage in interaction
(30), the attacker can intercept the communication and substitute the original

3 For example, the file chunk size that influences the calculation of CID.
4 Note that a user in our model can retrieve an asset file’s identifier and authenticator
(e.g., a CID or digital signature) from a secure decentralized infrastructure.

otherside.xyz

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 9

’Ownership Registry NFT Records

C L | Delegate: update delegatee (_T|_D,_O_“2, EOEQDLER_\,EﬁeJe_gEite_e)_ _

NFTM Orderbook '
—————(@)~ | List: offer NFT for sale Buy Orders Sell Orders 1
4@* Accept: accept bid TID, bid, buyer, aux | TID, ask, seller, aux

Browse: fetch orderbook| TID', bid', buyer’, aux'| TID', ask|, seller’, aux'
Purchase: buy NFT
Bid: bid in auction

€y
GD
<) :
@ Royalty: set payout addr.
@7 Read": fetch tokenURI TokenURI Cache Asset Cache*
—@D- TID— tokenURI [tokenURI — Asset

|Retrieve': fetch asset

1
1
1
1
1
1
1
1
1
1
J
1
7

Fig. 2: Centrally hosted NFTM Architecture. The Asset Cache* is optional.

dull asset with a more appealing one from the same collection. The buyer may
end up investing the dull asset at a much higher price than necessary. The lack of
end-user data verification in the architecture under discussion means that such
an attack is hard to detect from a victim user’s point of view.

Note that this attack is different from a simple counterfeit NFT where the
attacker registers its own NFT with the same tokenURI as an expensive, legit-
imate NFT. Counterfeit NFTs are easily detected because they are not part of
the same collection as the genuine NFTs.

4.3 Architecture Type III: Centralized NFTM

At the hub of any NFT ecosystem are versatile marketplaces that bridge all other
players. Because of its complex interactions with other entities, this service’s
centralization can pose most security risks, as explained in this section. Similarly
to our previous analysis, we consider two variants of centralized NFTM.

Centralized Access. Developing a full-fledged on-chain NFTM is challenging
and inefficient, but it is possible to implement the core functions, including the
maintenance of an orderbook and the matching and execution of orders, solely
with smart contracts. Few NFMTs are of this type. One example is CryptoPunk,
which is dedicated to one single collection of NFTs. Even with such a minimal
on-chain NFTM, a non-expert user still needs BaaS CIs to access the underlying
blockchain and must trust them for any received trading data.

Centralized Hosting. Most NFTMs today adopt this architecture (e.g., all of
the top 10 listed on DappRadar . com). They implement the marketplace service as
traditional web applications, allowing average users to manage and trade NFTs
with ease. To facilitate our analysis, we assume that such an application, which
typically consists of a web server and a database among many other components,
is hosted entirely by a single marketplace server (MS).

The MS implements a user-facing storefront to simplify user interactions,
stores the orderbook, provides users with buy- and sell order parameters to be

DappRadar.com

10 F. Stoger et al.

signed, caches the tokenURI (replacing interaction with 3B?)), and optionally
also caches the asset itself (replacing interaction (3C) with (3C?)). Nevertheless,
the core functionality of buy- and sell order matching is still implemented in
an NFTM smart contract. NFTMs can optionally also replicate the orderbook
on-chain for improved auditability by the user.

Our classification of centrally hosted NFTMs is complementary to prior re-
search [15], which classifies them according to which operations are implemented
off-chain. We however do not consider fully centralized NF'TMs which implement
order matching off-chain.

NFTMs also allow NFT creators to earn upon secondary sales of their tokens
by deducting a fraction of the sale price as royalties paid to the creator. EIP-
2981 [7] describes an on-chain royalty mechanism, though it is not universally
supported by NFTs and NFTMs. In its absence, NFTMs rely on proprietary
mechanisms. We consider a common approach where the NFTM stores the cre-
ator’s royalty payout address on the MS [15].

Attacks. The above architectures create the largest attack surface among all
forms of centralization. We identify attacks exploiting 9 different interactions. All
of them apply to centrally hosted marketplaces and the attack A6 also applies
to centrally accessed marketplaces.

A3: SetRoyalties({addr, amount} —). This attack targets royalty mecha-
nisms implemented by NFTMs where the payout address is stored exclusively
on the MS. These NFTMs allow logged-in® NFT creators to change their payout
address without additional authentication. By intercepting and replacing the
addr parameter sent by the creator to the MS as part of SetRoyalties with
its own address, an attacker will receive royalty payments from future sales of
the NFT. The attack will likely remain unnoticed until a sufficient amount of
royalties are siphoned off.

A4: List({TID, 0ID, ask} —). This attack tricks the seller into selling an NFT
to the attacker at an attacker-chosen price. To list an NFT for sale, the seller
should cryptographically sign a sell order with its blockchain private key. The
order’s parameters {TID, 0ID, ask} are provided by the MS as part of List.
Intercepting the interaction and reducing the ask parameter results in the NFT
being listed at a lower price than expected by the seller. This attack can be
detected and prevented if the seller carefully audits the sell order’s parameters
before signing it. However, most crypto wallets fail to display transaction data in
a structured and comprehensible way (beyond raw hex data), making transaction
auditing difficult for unsophisticated users.

A5: Delegate({TID, Mkt} —). This attack allows an attacker to directly steal
a seller’s NFTs. Recall that a seller should authorize an NFTM the right to
transfer a listed NFT after a successful sale, by making the latter the NFT’s
delegatee. The Delegate call occurs right after the call to List, and similarly
to the listing operation, the MS provides the corresponding parameters {TID,

5 In the case of OpenSea, a user maintains a logged-in status if it cryptographically
signed a “login-in” challenge in the last 24h.

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 11

Mkt} to the seller. An intercepting attacker can change Mkt to make itself the
delegatee and transfer the NFT to an account under its control. The detection
of this attack is also similar to .A4:, but Mkt being a pseudorandom value further
complicates manual transaction auditing.

A6: Browse(— {TID, ask, seller}). This attack tricks the buyer into perceiving
the attacker’s NFT offerings as better value than they actually are. It applies
to both centrally hosted and Cl-accessed decentralized NFTMs. The buyer re-
trieves a {TID,ask,seller} triplet for every NFT it browses from the NFTM’s
orderbook stored on the MS. An attacker can increase the ask value of compet-
ing offerings, which makes the buyer perceive the attacker’s offerings as better
value. This attack can only be detected if a copy of the orderbook is stored
on-chain, to which the buyer has untampered access. Centrally accessed NFTMs
are also susceptible to this attack because the attacker can intercept and modify
the triplet provided by the BaaS CI.

A7: Read’ (TID— tokenURI). Similarly to A2, this attack misleads buyers into
purchasing low-value fraudulent NFTs. A buyer retrieves a tokenURI through
Read’ for every TID retrieved previously through Browse. Intercepting and mod-
ifying the tokenURI can cause the buyer to fetch unexpected assets in the subse-
quent calls to Retrieve or Retrieve’. The buyer is thus tricked into associating
a low-value, attacker-owned NFT with the asset of a more valuable NFT. If the
buyer has untampered access to the ownership registry, it can detected the attack
by comparing the retrieved tokenURI against that stored in the registry.

A8: Retrieve’(tokenURI— asset). This attack also tricks the buyer into asso-
ciating an attacker-owned NFT with another asset. It is functionally equivalent
to A2 and A7, except that it targets NF'TMs that cache assets on the MS instead
of centralized asset storage.

A9: Purchase({TID, ask, buyer} —). We describe two attacks against the
Purchase interaction. The first deceives the buyer into purchasing an attacker-
chosen NFT instead of the intended one. The second redirects the funds intended
for purchasing an NFT to the attacker.

To purchase an NFT, the buyer signs a buy order blockchain transaction
whose parameters {TID, ask, buyer} are provided by the MS, similarly to the
sell order in .44. By changing the TID parameter to that of an NFT sold by the
attacker, signing the buy order causes the buyer to purchase the attacker’s NFT.

Each blockchain transaction has a destination address as an additional pa-
rameter, which in our scenario is provided by the MS as the NFTM smart con-
tract address. In the second attack, the attacker intercepts and replaces this
address with that of its own smart contract. This causes the buyer to uninten-
tionally send the buy transaction with the included funds to the attacker.

A buyer can detect both attacks by careful audit the transactions.

A10: Bid({TID, bid, buyer} —). We describe four attacks against NFT auc-
tions. The first attack tricks the buyer into bidding on an attacker-offered NFT,
the second into placing unnecessarily high bids, the third into redirecting funds

12 F. Stoger et al.

intended for purchasing an NFT to the attacker, and the fourth into bidding an
attacker-chosen amount.

The first attack is functionally identical to the first attack of A9, except that
the attacker exploits the Bid function instead of Purchase.

The second attack increases the current highest bid amount retrieved by the
buyer from the MS. This coerces the buyer into bidding more than necessary to
win the auction. Detection is only possible if a copy of the current bids is stored
on-chain, against which the buyer can compare the amount provided by the MS.

The third and fourth attack are complementary, and they target NFTMs
implementing Bid as blockchain transactions or as interactions with the MS re-
spectively. In both cases, Bid parameters {TID, bid, buyer} are provided by the
MS. If Bid is a blockchain transaction, the funds are transferred to the NFTM
as part of the transaction and held there for the duration of the auction. Wallets
prominently display the amount of cryptocurrency attached to the transaction,
making modifications easy to detect. The attacker can, however, stealthily mod-
ify the blockchain destination address as outlined in second attack of .49 and
thus extract the funds. If Bid is not a blockchain transaction, it is merely a signed
commitment by the buyer to purchase the token upon winning the auction. As
no cryptocurrency is transferred, the amount is not prominently displayed by
wallets. Intercepting and increasing the bid tricks the buyer into bidding more
than intended. Careful manual auditing can detect the attack.

A11: Delegate({TID, Mkt} —). In bidding protocols where the funds are only
transferred upon winning the auction, the NFTM must have access to the bid-
der’s account to execute the winning bid. This is achieved by the buyer delegating
tokens equal in value to the bid amount to the NFTM. On Ethereum, wrapped
Ether (WwETH), a fungible ERC-20 token, is commonly used. Intercepting and
replacing Mkt provided by the MS with the attacker’s address tricks the buyer
into delegating the tokens to the attacker. Detection requires manual auditing
and knowledge of the expected Mkt value.

4.4 Architecture Type IV: Centralized Ownership Registry

For this architecture, we only consider an on-chain ownership registry accessed
through a BaaS CI, as by design NFT records should be stored on a blockchain.

A12: Read(TID— tokenURI). This attack is functionally equivalent to A7, except
that it targets a centrally accessed ownership registry instead of an NFTM.

5 Attack Validation

We have validated our attacks on real systems used in today’s NFT ecosystem.
We focus on the case of centralized NFTMs, because (1) they are common in
the real world, (2) they normally subsume the functions of other Cls like BaaS
and IPFS as discussed earlier, and (3) they allow us to simulate complete attack
procedures from the preparation (deploying fraudulent contracts, creating and
listing bait NFTs, etc.) to the production of final outcomes (see Table 1).

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 13

1 class ChangeHTTPCode:

2 def request(self, flow: http.HTTPFlow) -> None:

3 graphgl_id = "useCollectionFormEditMutation”

4 request_url = flow.request.pretty_url

5 raw_payload = flow.request.get_text(strict = False)

6 if not ("graphgl" in request_url and graphql_id in raw_payload):
7
8

return
new_creator_fees = [{"address": attacker_account, "basisPoints":560}]
9 payload = json.loads(raw_payload)
10 payload['variables']['input']['collectionInput']['creatorFees'] = new_creator_fees
11 new_payload = json.dumps(payload)
12 flow.request.set_text(new_payload)

13 addons = [ChangeHTTPCode()]

Fig. 3: Python code for changing royalty payout address with mitmproxy.

Setup. We simulate the attacks using OpenSea—the largest NF'TM today—on
the Ethereum Rinkeby testnet. For user-side software, we use the Firefox browser
with the MetaMask crypto wallet. To simulate a man-in-the-middle attacker, we
use the mitmproxy tool and install a self-signed CA certificate into Firefox’s trust
store. This setup allows us to route all Firefox traffic to mitmproxy, where we
can intercept and decrypt the HTTPS requests or responses and modify different
data fields according to the simulated attacks.

Validation Details. Our attacks can be conducted in two ways: (1) directly
modify data exchanged between the victim and the MS, or (2) exploit third-
party JavaScript (JS) loaded in the NFTM storefront. While the first approach
targets the victim’s connection to the MS, the second approach targets the vic-
tim’s connection to third-party JS providers. By intercepting and maliciously
modifying JS loaded from these providers, the attacker can execute arbitrary
JS in the victim’s browser. The attacks against centralized NFTMs are further
categorized based on their methodologies.

— Royalty payout address change: A3
— Change order or transaction parameters: A4, A5, A9, A10, A1l
— Wrong data fetched from NFTM: A6, A7, A8

We briefly explain the validation of attacks .43 and .49, which are representative
for their respective attack category. We have also successfully validated the third
attack category via straightforward modifications to data fetched from the MS.

Royalty payout address change (A3). In attack A3, the attacker targets
NFTMs that store the royalty payout address on their MS and replaces the
creator’s address with its own. In our validation, the creator submits a new
payout address through OpenSea’s user portal, and this is encoded as a GraphQL
HTTPS request. We can intercept the request using mitmproxy and modify
the address. Figure 3) shows the python code to implement the interception,
including finding the request for changing the royalty payout address (lines 3-7)
and replacing the address with an attacker’s controlled account (lines 8-12).

Change order or transaction parameters (.A9). We have validated both
versions of A9. The first version causes the buyer to purchase an attacker-chosen

14 F. Stoger et al.

Extension: (MetaMask) - MetaMask Notifi... & Extension: (MetaMask) - MetaMask Notifi... &

Rinkeby Test Network Rinkeby Test Network
) Account | 0x000...E581) Account 1 (0x272...Bc45
MNew address detected! Click here to add to your Mew address detected! Click here to add to your
address book. address book.
https://testnets.opensed.io https://testnets.opensea.io

FU_F LL BASIC ORDER @ FULFILL BASIC ORDER @
©¢1 ETH ©¢1 ETH

DETAILS DATA HEX DETAILS DATA HEX

(a) Untampered transaction (b) Tampered transaction

Fig. 4: Screenshots of MetaMask showing a genuine and a fradulent transaction.
The latter claims to be from the NFTM and has the correct function name.
Signing this transaction causes 1 ETH sent to the attacker.

NFT, and the second directs the buyer’s buy-transaction to a malicious smart
contract that extracts the attached cryptocurrency.

For the first attack, we simulate a buyer’s request for an NFT through the
OpenSea website, which generates an HTTPS request containing the sell-order
ID orderId to the GraphQL endpoint on the MS. We can intercept this request
using mitmproxy and change orderId to another attacker-controlled order. The
MS will respond with the unsigned buy transaction corresponding to the ma-
licious orderId and thus cause the buyer to inadvertently buy the attacker’s
NFT. The modification of orderId is minor and hard to notice, unless the vic-
tim carefully compares the NFT information displayed on the OpeaSea website
and the parameters contained in the transaction to sign, which requires manual
decoding of the raw, hex-encoded transaction data in MetaMask.

For the second attack, the attacker first deploys a malicious smart contract
which extracts cryptocurrency from received transactions. When the buyer re-
quests to buy an NFT, the attacker intercepts and replaces the destination
field in the transaction data provided by the MS with that of its malicious
smart contract. As seen in Figure 4, the attack only causes visible changes to
the destination address field and the icon associated with the address (both are
pseudorandom values). MetaMask still displays the genuine OpenSea URL and
the prominently displayed cryptocurrency amount is unchanged.

Ethical Consideration. Our experiments create test smart contracts and
NFTs on a public blockchain intended for testing, including security research.
They incur no real costs, even if tokens are accidentally purchased by other
users. The test assets uploaded to IPFS disappear after some time if they are not
cached by any node. Note that our attacks do not exploit the service providers’

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 15

Table 2: The susceptibility of the top 10 NFTMs (according to DappRadar.
com) to prefix hijack attack. “Decentralized” architecture allow trading without
MS. We mark MSes loading JavaScript from JavaScript providers vulnerable to
subprefix hijacking as “JS.” An aggregator NFTM collects sell order from other
NFTMs. Its security thus depends on the security of the queried NFTMs.

Interception Vulnerable JS

NFTM Architecture Possible Provider Vulnerability

OpenSea MS, off-chain No - -
Decentralized

CryptoPunks MS, on-chain No - -

LooksRare MS, off-chain JS cdn.jsdelivr.net Max-Len

X2Y2 - No

Rarible MS, off-chain JS static.klaviyo.com No ROA
Decentralized .

SuperRare Central MS JS cdn.heapanalytics.com Max-Len

. Decentralized

Foundation . JS cdn.segment.com Max-Len
MS, on-chain

Decentraland - JS cdn.segment.com Max-Len

Element Aggregator No

Golom - Yes/JS Max-Len

systems but generic network vulnerabilities in centralized architectures. Service
providers often consider man-in-the-middle attacks beyond their responsibility.
We reported our findings through OpenSea’s bug bounty program [2] and re-
ceived the confirmation that our attacks are not within its scope.

6 Vulnerabilities of Real-world Entities

We analyze the susceptibility of popular real-world NFTMs and Cls to our at-
tacks, by examining the BGP security of their networks. Specifically, we inspect
whether they are vulnerable to subprefix hijacking, a practical and highly effec-
tive form of BGP hijacking attack that happens frequently in today’s Internet.
Using an open Internet data platform RIPEstat, we collected relevant informa-
tion such as publicly announced IP prefix, source AS, and route origin attestation
(ROA). The IP prefix of an entity is deemed vulnerable to subprefix hijacking if:
(1) no valid ROA exists and the prefix length is less than 24, or (2) a valid ROA
exists but the max-length field in the ROA is strictly greater than the prefix
length and the prefix length is less than 24.

Our investigation results for NFTMs are shown in Table 2. One popular mar-
ketplace (Golom) has its MS directly originating from an IP prefix susceptible to
subprefix hijacking. Six NFTMs rely on JavaScript code originating from risky
IP prefixes; once these external JavaScript providers are hijacked by our network
attacker, so could be the NFTMs. This suggests that NFTMs should carefully

DappRadar.com
DappRadar.com

16 F. Stoger et al.

Table 3: Popular CIs’ susceptibility to prefix hijack attack

Centralized service Vulnerable AS Reason
IPFS Gateways

4everland.io AS16509 Max-Len
hardbin.com AS14061 Max-Len
ipfs.eth.aragon.network AS24940 Max-Len
jorropo.net AS14061 No ROA
ipfs.runfission.com AS14618 Max-Len

BaaS Gateways
mainnet.infura.io AS14618 Max-Len

audit their external dependencies to minimize their attack surface. We also iden-
tified 5 IPFS gateways and one major BaaS provider (Infura) that are subject
to subprefix hijacking, as shown in Table 3. There are likely more in the wild.

Note that even if NFT service providers reside in secure networks that are
resistant to BGP hijacking, our attacks can still be launched if users or their
DNS servers locate in vulnerable ASes, or these servers are subject to DNS cache
poisoning attacks [13]. A comprehensive demographic study of victim users is an
interesting avenue for future research.

Most NFT service providers deploy TLS to secure their communication with
users. A successful attack thus requires the attacker to obtain a fraudulent TLS
certificate to impersonate a service provider’s domain. This has been demon-
strated to be practical in many ways, especially by attacking the domain vali-
dation process during certificate issuance [29,6].

7 Conclusion

This paper makes a step in uncovering the security risks of centralization in the
booming Web3 ecosystem. We focus on the case of NFT, a central application
of Web3, and perform a systematic study of architecture-level vulnerabilities
regarding the interactions between users and centralized entities. Our results
confirm that centralization increases the overall attack surface by a wide margin.
This is worrisome given the variety and practicality of such attacks, and the large
financial investments in NFTs. Some of these attacks are relatively easy to detect
if users take caution to audit blockchain transactions before signing them; the
others are less so, requiring the shift to a truly decentralized architecture or
extensive end-to-end data authentication.

Our findings also underscore the importance of secure Internet infrastructures
for inter-domain routing and name resolution, which would prevent our attacks
in the first place. A promising research direction is to evaluate how existing
security extensions to the Internet as well as emerging clean-slate solutions [9,16]
can improve the Web3 ecosystem’s resilience to attacks.

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 17
References

1. Official IPFS gateway. https://ipfs.io.

2. OpenSea Bug Bounty Program. https://hackerone.com/opensea.

3. Anders, Lance, and Shrug. EIP-4907: Rental NFT, an Extension of EIP-721.
Available: https://eips.ethereum.org/EIPS/eip-4907, March 2022.

4. Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking Bitcoin: Routing
attacks on cryptocurrencies. In Proc. of the IEEE Symposium on Security and
Privacy (S&P), 2017.

5. Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A Survey of Attacks on
Ethereum Smart Contracts SoK. In Proc. of the International Conference on
Principles of Security and Trust (POST), 2017.

6. Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and Prateek
Mittal. Bamboozling Certificate Authorities with BGP. In Proc. of the USENIX
Security Symposium, 2018.

7. Zach Burks, James Morgan, Blaine Malone, and James Seibel. EIP-2981: NFT Roy-
alty Standard. Available: https://eips.ethereum.org/EIPS/eip-2981, Septem-
ber 2020.

8. Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. SoK:
Blockchain Light Clients. In Proc. of the International Conference on Financial
Cryptography and Data Security (FC), 2022.

9. Laurent Chuat, Markus Legner, David Basin, David Hausheer, Samuel Hitz, Peter
Miiller, and Adrian Perrig. The Complete Guide to SCION. From Design Principles
to Formal Verification. Springer International Publishing AG, 2022.

10. Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chandrasekaran, David
Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and Christo Wilson. A Lon-
gitudinal, End-to-End View of the DNSSEC Ecosystem. In Proc. of the USENIX
Security Symposium, 2017.

11. Catalin Cimpanu. DNS hijacks at two cryptocurrency sites
point the finger at GoDaddy, again. https://therecord.media/
two-cryptocurrency-portals-are-experiencing-a-dns-hijack-at-the-same-time/.
Accessed 01/10/2022.

12. Catalin Cimpanu. KlaySwap crypto users lose funds after BGP hijack. https:
//therecord.media/klayswap-crypto-users-lose-funds-after-bgp-hijack/.
Accessed 01/10/2022.

13. Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner. From IP to
Transport and beyond: Cross-Layer Attacks against Applications. In Proc. of the
ACM SIGCOMM Conference, 2021.

14. Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. Flash Boys 2.0: Frontrunning in Decentralized
Exchanges, Miner Extractable Value, and Consensus Instability. In Proc. of the
IEEE Symposium on Security and Privacy (S&P), 2020.

15. Dipanjan Das, Priyanka Bose, Nicola Ruaro, Christopher Kruegel, and Giovanni
Vigna. Understanding Security Issues in the NFT Ecosystem. In Proc. of the ACM
Conference on Computer and Communications Security (CCS), 2022.

16. Huayi Duan, Rubén Fischer, Jie Lou, Si Liu, David Basin, and Adrian Perrig.
Rhine: Robust and high-performance internet naming with e2e authenticity. In
Proc. of USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2023.

https://ipfs.io
https://hackerone.com/opensea
https://eips.ethereum.org/EIPS/eip-4907
https://eips.ethereum.org/EIPS/eip-2981
https://therecord.media/two-cryptocurrency-portals-are-experiencing-a-dns-hijack-at-the-same-time/
https://therecord.media/two-cryptocurrency-portals-are-experiencing-a-dns-hijack-at-the-same-time/
https://therecord.media/klayswap-crypto-users-lose-funds-after-bgp-hijack/
https://therecord.media/klayswap-crypto-users-lose-funds-after-bgp-hijack/

18

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

F. Stoger et al.

William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. EIP-721:
Non-Fungible Token Standard.

Ittay Eyal and Emin Giin Sirer. Majority is not enough: Bitcoin mining is vulner-
able. Communications of the ACM, 61(7):95-102, 2018.

Yossi Gilad, Avichai Cohen, Amir Herzberg, Michael Schapira, and Haya Shulman.
Are We There Yet? On RPKI’s Deployment and Security. Cryptology ePrint
Archive, Paper 2016/1010, 2016. https://eprint.iacr.org/2016/1010.

James Grimmelmann, Yan Ji, and Tyler Kell. EIP-5218: NFT Rights Management.
Available: https://eips.ethereum.org/EIPS/eip-5218, July 2022.

Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse Attacks
on Bitcoin’s Peer-to-Peer Network. In Proc. of USENIX Security, 2015.

Bo Jiang, Ye Liu, and Wing Kwong Chan. Contractfuzzer: Fuzzing smart contracts
for vulnerability detection. In Proc. of the IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2018.

David Johnston, Sam Onat Yilmaz, Jeremy Kandah, Nikos Bentenitis, Farzad
Hashemi, Ron Gross, Shawn Wilkinson, and Steven Mason. The General Theory
of Decentralized Applications, DApps. Technical report, 2014.

Kai Li, Jiaqi Chen, Xianghong Liu, Yuzhe Richard Tang, XiaoFeng Wang, and
Xiapu Luo. As Strong As Its Weakest Link: How to Break Blockchain DApps
at RPC Service. In Proc. of the Symposium on Network and Distributed Systems
Security (NDSS), 2021.

Shaurya Malwa. Two Polygon, Fantom Front Ends Hit by
DNS Attack. https://www.coindesk.com/tech/2022/07/01/
two-polygon-fantom-front-ends-hit-by-dns-attack/. Accessed 01,/10,/2022.
Moxie Marlinspike. My first impressions of web3. https://moxie.org/2022/01/
07/web3-first-impressions.html, January 2022. Accessed 01.10.2022.

Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. VerX: Safety Verification of Smart Contracts. In Proc. of the IEEE
Symposium on Security and Privacy (S&P), 2020.

Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar,
Ertem Nusret Tas, and David Tse. Three Attacks on Proof-of-Stake Ethereum.
In Proc. of the International Conference on Financial Cryptography and Data Se-
curity (FC), 2022.

Lorenz Schwittmann, Matthidus Wander, and Torben Weis. Domain Impersonation
is Feasible: A Study of CA Domain Validation Vulnerabilities. In Proc. of the IEEE
European Symposium on Security and Privacy (EuroS&P), 2019.

Liya Su, Xinyue Shen, Xiangyu Du, Xiaojing Liao, XiaoFeng Wang, Luyi Xing,
and Baoxu Liu. Evil Under the Sun: Understanding and Discovering Attacks on
Ethereum Decentralized Applications. In Proc. of USENIX Security, 2021.
Verified Market Research (VMR). Non-Fungible Tokens Market Size And Forecast.
Technical report, 2022.

Dabao Wang, Hang Feng, Siwei Wu, Yajin Zhou, Lei Wu, and Xingliang Yuan.
Penny Wise and Pound Foolish: Quantifying the Risk of Unlimited Approval of
ERC20 Tokens on Ethereum. In Proc. of the International Symposium on Research
in Attacks, Intrusions and Defenses (RAID), 2022.

Ziwei Wang, Jiashi Gao, and Xuetao Wei. Do NFTs’ Owners Really Possess Their
Assets? A First Look at the NFT-to-Asset Connection Fragility. In Proc. of the
ACM Web Conference (WWW), 2023.

Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais.
High-Frequency Trading on Decentralized On-Chain Exchanges. In Proc. of the
IEEE Symposium on Security and Privacy (S&P), 2021.

https://eprint.iacr.org/2016/1010
https://eips.ethereum.org/EIPS/eip-5218
https://www.coindesk.com/tech/2022/07/01/two-polygon-fantom-front-ends-hit-by-dns-attack/
https://www.coindesk.com/tech/2022/07/01/two-polygon-fantom-front-ends-hit-by-dns-attack/
https://moxie.org/2022/01/07/web3-first-impressions.html
https://moxie.org/2022/01/07/web3-first-impressions.html

	Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking

